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Utilizing the Generalized Likelihood Ratio as a Termination Criterion 

 

 A common application for computer-based testing is to classify examinees into mutually 

exclusive groups.  Currently, the predominant psychometric algorithm for designing computerized 

classification tests (CCTs) is the sequential probability ratio test (SPRT; Reckase, 1983) based on item 

response theory (IRT).  The SPRT operates by formulating a point hypothesis test that a given examinee’s 

ability value  is equal to a fixed value below ( ) or above ( ) the classification cutscore.  The space 

between these two points is referred to as the indifference region, as the test developer is indifferent to the 

classification assigned.  

 The SPRT has been shown to be more efficient than confidence intervals around ability estimates 

as a method for CCT delivery (Spray & Reckase, 1996; Rudner, 2002).  More recently, it was 

demonstrated that the SPRT, which only uses fixed values, is less efficient than a generalized form which 

tests whether a given examinee’s  is below or above  (Thompson, 2007).  This formulation allows 

the indifference region to vary based on observed data.  Moreover, this composite hypothesis formulation 

better represents the conceptual purpose of the exam, which is to test whether  is above or below the 

cutscore. 

 The purpose of this study is to explore the specifications of the new generalized likelihood ratio 

(GLR: Huang, 2004).  As with the SPRT, the efficiency of the procedure depends on the nominal error 

rates and the distance between  and  (Eggen, 1999).  This study utilized a monte carlo approach, with 

10,000 examinees simulated under each condition, to evaluate differences in efficiency and accuracy due 

to hypothesis structure, nominal error rate, and indifference region size. 

  

 

The SPRT 

The SPRT compares the ratio of the likelihoods of two competing hypotheses.  In CCT, the 

likelihoods are calculated using the probability P of an examinee’s response to item i if each of the 

hypotheses were true, that is, if the examinee were truly a “pass” (P2) or “fail” (P1) classification.  The 

probability of an examinee’s response X to item i is calculated with an IRT item response function.  An 

IRT model commonly applied to multiple-choice data for achievement or ability tests when examinee 

guessing is likely is the three-parameter logistic model (3PL).  With the 3PL, the probability of an 

examinee with a given  correctly responding to an item is (Hambleton & Swaminathan, 1985, Eq. 3.3): 
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where  

ai is the item discrimination parameter, 

bi is the item difficulty or location parameter, 

ci is the lower asymptote, or pseudoguessing parameter, and 

D is a scaling constant equal to 1.702 or 1.0. 

 

The SPRT is expressed as the ratio of the likelihood of a response at two points on θ, θ1 and θ2, 
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Note that, since the probabilities are multiplied, the SPRT is equivalent to the ratio of the value of the IRT 

likelihood function at two points.  The ratio is then compared to two decision points A and B, (Wald, 

1947):  

 

 Lower decision point = B = (2) 

 Upper decision point = A = (3) 

 

 If the ratio is above the upper decision point after n items, the examinee is classified as above the 

cutscore.  If the ratio is below the lower decision point, the examinee is classified as below the cutscore.  

If the ratio is between the decision points, another item is administered.   

 Formulations of the SPRT for CCT differ in the calculation of the probabilities by composing the 

structure of the hypotheses differently.  The calculation of the ratio and the decision points remain the 

same.  The point hypothesis method calculates P1 and P2 at fixed points selected by the test developer, 

while the composite hypothesis method at variable points, wherever the likelihood function is the highest. 

Because IRT is utilized, this first requires the cutscore to be set on the  metric.  This can be done 

in one of two ways.   A point can be specified directly on , such as a cutscore of 0.0 to identify the top 

half of the population.  The cutscore can also be translated from a cutscore previously set on the 

proportion-correct metric by applying a test characteristic curve and solving for the value of  linked to 

the proportion-correct cutscore. 

 

Point hypothesis formulation 

 The point hypothesis method suggested by Reckase (1983) specifies two fixed points 1 and 2 on 

either side of the cutscore.  Conceptually, this is done by defining the highest  level that the test designer 

is willing to fail ( 2) and the lowest  level that the test designer is willing to pass ( 1).  In practice, 

however, these points are often determined by specifying an arbitrary small constant , then adding and 

subtracting it from the cutscore (e.g., Eggen, 1999; Eggen & Straetmans, 2000). 

 Therefore, the hypothesis test is structured as  

 

  H0:  = 1       (4) 

  H1:  = 2.       (5) 

 

 A graphic representation of this method is shown in Figure 1.  In this example, the cutscore is 0.4 

and δ= 0.1, such that θ1 = 0.3 and θ2= 0.5.   The likelihood function is evaluated at these two points, 

producing a ratio of approximately 0.55/0.44 = 1.25.  The likelihood that the examinee is a “pass” is 

greater than the likelihood they are a “fail,” but the classification cannot be made with much confidence at 

this point in the test. 

This is partially due to the relatively small value of  that is illustrated, which produces a 

relatively small P2 – P1 difference.  It is evident from Figure 1 that increasing the space between 1 and 2 

would increase this difference and therefore the likelihood ratio.  The generalized likelihood ratio (GLR) 

is designed to take advantage of this. 

 

The generalized likelihood ratio 

 The GLR is specified and calculated with the same methods as the fixed-point SPRT, with the 

exception that 1 and 2 are allowed to vary.  Rather than evaluate the likelihood function at each 

endpoint of the indifference region, instead it is evaluated at the highest points beyond the endpoints.  If 

the maximum of the likelihood function is outside the indifference region, that maximum will be utilized 

in the likelihood ratio for that side.  For example, in Figure 1 the maximum is to the right of the 

indifference region, and will be utilized in the likelihood ratio.  The side without the maximum is 

evaluated the same as with the SPRT. 

 



Figure 1: Example likelihood function and indifference region 

 
   

 In the example of Figure 1, this modification to the likelihood ratio now produces a value of 

0.62/0.44 = 1.41.  Because this ratio is further from a ratio of 1.0 than the fixed SPRT value of 1.25, the 

classification can be made with more confidence given the same number of items, or with equal 

confidence given a fewer number of items.  The primary research question of this study is whether this 

increase in efficiency comes with an increase in classification error (false positives and false negatives), 

and if the efficiency is moderated by nominal error rates or the width of the indifference region. 

 

Method 

 

 A monte carlo simulation was designed to evaluate this research question via two substudies.  The 

first investigated the effect of indifference region width on the efficiency of the GLR while 

simultaneously comparing the observed classification error rates to the nominal rate.  The second 

compared the GLR with the SPRT. 

Parameters were generated for a bank of 300 items.  The descriptive statistics of the item 

parameters are shown in Table 1, and reflect the fact that the bank was intended to provide a substantial 

number of items with difficulty near the cutscore of -0.50.  A distribution of examinees was also 

randomly generated, from a N(0,1) distribution.  The study simulated a test for each examinee in each 

condition of the study, with the practical test length constraints of a minimum of 20 and a maximum of 

200. 

 

Table 1: Item parameter statistics 

 

Statistic a b c 

Mean 0.70 -0.50 0.25 

SD 0.20 0.51 0.04 

Min 0.03 -1.98 0.13 

Max 1.24 0.75 0.37 



 The dependent variables quantify both the efficiency and the accuracy of the simulated tests.  The 

efficiency is indexed by the average test length (ATL), or mean number of items required to make a 

classification.  The accuracy of the test is indexed by the percentage of examinees correctly classified 

(PCC), because the results of the test can be compared to the known true classification. 

 As mentioned, the first substudy only investigated the performance of the GLR.  The independent 

variable was the width of the indifference region, manipulated by varying δ from 0.0 to 0.50 in 

increments of 0.02.  The results are presented in Figure 2 for a nominal error rate of 5% and in Figure 3 

for a nominal error rate of 1%.   

 

Figure 2: ATL and PCC for 5% nominal error rate with the GLR 

 

 
 

Figure 3: ATL and PCC for 1% nominal error rate with the GLR 

 

 



The PCC decreased minimally as δ increased, while ATL dropped dramatically.  Increasing the 

size of the indifference region will greatly decrease the number of items needed to make classifications, 

but will also decrease the accuracy of the test.  This effect was true in both conditions.  However, the 

accuracy remained near nominal levels for the 5% condition; for the 1% condition, observed accuracy 

was always lower than the nominal accuracy. 

Having demonstrated the ability of the GLR to classify examinees regardless of indifference 

region width, the next step was to compare the efficiency of the GLR to the fixed-point SPRT.  The same 

study was completed, but with δ intervals of 0.1 rather than 0.02.  The results are presented in Figures 4 

and 5. 

 

Figure 4: ATL and PCC for 5% nominal error rate, comparing GLR and SPRT 

 

 
 

Figure 5: ATL and PCC for 5% nominal error rate, comparing GLR and SPRT 

 

 



 Figures 4 and 5 present a similar shape to Figures 2 and 3, with the ATL dropping sharply while 

the PCC decreases minimally.  The GLR requires fewer items when δ is 0.3 or smaller, while the two 

methods perform equivalently with larger values of δ.  However, note that PCC appears stable when δ is 

0.3 or smaller, but decreases afterwards. 

 

Discussion 

 

 As is evident in Figures 4 and 5, the GLR is always at least as efficient as the fixed-point SPRT 

while maintaining equivalent levels of accuracy.  This suggests that the GLR be used in applied 

assessment programs rather than the SPRT, especially since the difference in algorithm is small. 

 However, the most important message of this study is the strong effect that δ has on both the 

accuracy and efficiency of the test.  For this reason, the width of the indifference region should never be 

specified by the arbitrary methods often suggested: attempting to estimate the θ values corresponding to a 

minimal pass or a maximal failure, or even worse, simply adding and subtracting an arbitrarily chosen 

number δ.  Instead, a study such as this one should be conducted, designed based on actual characteristics 

of a testing program like bank size and examinee distribution, to determine the value of δ that produces 

the shortest test lengths while still maintaining the desired level of accuracy. 
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