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Abstract 

 

 An efficient method for making decisions is to evaluate the ratio of likelihoods for competing 

hypotheses, such as "Pass" or "Fail."  It is typically used in the context of only two categories and item 

response theory, but this approach is easily extended to multiple categories (Eggen, 1999) and classical 

test theory (Rudner, 2002).  This paper will provide a review of this approach as well as a comparison of 

the most current methods, most notably the comparison of a point hypothesis structure to a composite 

hypothesis structure.  It will also present current issues facing the method and recommendations for 

further research. 
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Termination Criteria for Computerized Classification Testing 

 

 In educational assessment, a common purpose of a test is to classify examinees into mutually 

exclusive groups rather than obtain accurate estimates of individual scores.  This is often termed mastery 

testing when the test is designed to determine if a student has mastered material by classifying them as 

“pass” or “fail.”  There are several methods of calculating this decision, the most obvious of which is 

utilizing the observed number-correct score on a traditional fixed-form test.  However, more sophisticated 

methods have been suggested in which the computerized test delivery mechanism is designed to be 

intelligent and adapt both the number and nature of the items in the test to each examinee as they proceed 

sequentially through the test.  The variable-length statistical mechanism that decides when to stop the test 

and classify the examinee is known as the termination criterion or stopping rule (Kingsbury & Weiss, 

1983). 

 These computerized classification tests (CCTs; Parshall, Spray, Kalohn, & Davey, 2002) can be 

based on item response theory (IRT; Hambleton & Swaminathan, 1985) or classical test theory (Rudner, 

2002).  While the classical approach can be quite efficient (Frick, 1992), this paper will focus on the 

utilization of IRT.  When based on IRT, the classification decision is made with two paradigms: 

likelihood ratios (e.g., Reckase, 1983) and confidence intervals (e.g., Kingsbury & Weiss, 1983).  Both 

utilize the likelihood function of examinee ability, and have been termed statistical classification and 

statistical estimation by Eggen (1999).   

 The likelihood ratio was originally formulated as a point hypothesis sequential probability ratio 

test (SPRT) by Reckase (1983).  The SPRT operates by testing that a given examinee’s ability value  is 

equal to a fixed value below ( ) or above ( ) the classification cutscore.  The space between these two 

points is referred to as the indifference region, as the test developer is nominally indifferent to the 

classification assigned.  The SPRT has been shown to be more efficient than confidence intervals around 

ability estimates as a method for CCT delivery (Spray & Reckase, 1996; Eggen & Straetmans, 2000).   

 However, Weitzman (1982) suggested that the classification problem could also be formulated as 

a composite hypothesis, namely that a given examinee’s  is below  or above .  This conceptually 

matches the goal of CCT more closely, which is to test whether  is above or below the cutscore.  

Weitzman proposed a method of specifying parameters for the likelihood ratio with a composite 

hypothesis, but used classical test theory as an approximation of IRT.  Some of the issues encountered by 

Weitzman can be addressed by the application of item response theory directly to the termination criterion 

as a composite hypothesis.  However, this line of research was not continued until recently. 

 Bartroff, Finkelman, and Lai (2008) and Thompson (2009a) independently suggested using a 

generalized likelihood ratio (GLR: Huang, 2004) based on the IRT likelihood function.  The purpose of 

this paper is to explore the application of the GLR to CCT with two monte carlo simulation studies.  The 

first study provides a comparison of the GLR to other methods of CCT.  The second study explores the 

difference between the GLR and the SPRT, and the role of the indifference region. 

 

Termination criteria 

The likelihood ratio compares the ratio of the likelihoods of two competing hypotheses.  In CCT, 

the likelihoods are calculated using the probability P of an examinee’s response to item i if each of the 

hypotheses were true, that is, if the examinee were truly a “pass” (P2) or “fail” (P1) classification.  With 

IRT, the probability of an examinee’s response X to item i is calculated with an item response function.  

An IRT model commonly applied to multiple-choice data for achievement or ability tests when examinee 

guessing is likely is the three-parameter logistic model (3PL).  With the 3PL, the probability of an 

examinee with a given  correctly responding to an item is (Hambleton & Swaminathan, 1985, Eq. 3.3): 
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ai is the item discrimination parameter, 

bi is the item difficulty or location parameter, 

ci is the lower asymptote, or pseudoguessing parameter, and 

D is a scaling constant equal to 1.702 or 1.0. 

 

The likelihood ratio is expressed as the ratio of the likelihood of a response at two points on θ, θ1 

and θ2, 
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Note that, since the probabilities are multiplied, this is equivalent to the ratio of the value of the IRT 

likelihood function at two points.  A value greater than 1.0 indicates a higher likelihood of the examinee 

being a “pass” classification.  The ratio is then compared to two decision points A and B, (Wald, 1947):  

 

 Lower decision point: 
1

B       (3) 

 Upper decision point: 
1

A .     (4) 

 

 If the ratio is above the upper decision point after n items, the examinee is classified as above the 

cutscore.  If the ratio is below the lower decision point, the examinee is classified as below the cutscore.  

If the ratio is between the decision points, another item is administered.  Note that the decision points do 

not need to be specified directly.  Instead, the nominal error levels α and β are specified to reflect the need 

of the testing program, and used to calculate A and B.  As a practical example, setting both to 0.025 would 

indicate 95% accuracy, and translate to A = 39.0 and B = 0.026. 

 Formulations of the likelihood ratio for CCT differ in the calculation of the probabilities by 

composing the structure of the hypotheses differently.  The calculation of the ratio and the decision points 

remain the same.  The point hypothesis SPRT calculates P1 and P2 at fixed points selected by the test 

developer, while the composite hypothesis method calculates at variable points, wherever the likelihood 

function is the highest. 

Because IRT is utilized, this first requires the cutscore to be set on the  metric.  This can be done 

in one of two ways.   A point can be specified directly on , such as a cutscore of 0.0 to identify the top 

half of the population.  The cutscore can also be translated from a cutscore previously set on the 

proportion-correct metric by applying a test characteristic curve and solving for the value of  linked to 

the proportion-correct cutscore (Parshall, Spray, Kalohn, & Davey, 2002). 

 

Point hypothesis formulation 

 The point hypothesis method, known as the SPRT, suggested by Reckase (1983) specifies two 

fixed points 1 and 2 on either side of the cutscore.  Conceptually, this is done by defining the highest  

level that the test designer is willing to fail ( 2) and the lowest  level that the test designer is willing to 

pass ( 1), hence the term indifference region for this range.  In practice, however, these points are often 

determined by specifying an arbitrary small constant , then adding and subtracting it from the cutscore 

(e.g., Eggen, 1999; Eggen & Straetmans, 2000). 

 Therefore, the hypothesis test is structured as  
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  H0:  = 1       (5) 

  H1:  = 2.       (6) 

 

 A graphic representation of this method is shown in Figure 1.  In this example, the cutscore is -

0.4 and δ= 0.1, such that θ1 = -0.3 and θ2= -0.5.   The likelihood function is evaluated at these two points, 

producing a ratio of approximately 0.055/0.044 = 1.25.  The likelihood that the examinee is a “pass” is 

greater than the likelihood they are a “fail,” but the classification cannot be made with much confidence at 

this point in the test. 

 

Figure 1: Example likelihood function and indifference region 

 
 

This is partially due to the relatively small value of  that is illustrated, which produces a 

relatively small P2 – P1 difference.  It is evident from Figure 1 that increasing the space between 1 and 2 

would increase this difference and therefore the likelihood ratio.  The generalized likelihood ratio (GLR) 

is designed to take advantage of this. 

Eggen (1999) and Eggen and Straetmans (2000) utilize the point hypothesis approach for 

classification into more than two categories.  The likelihood ratio is evaluated at each cutscore to make 

decisions.  For example, if there are two cutscores defining three categories, failing at both cutscores 

would translate to a classification in the lowest group.  Passing both cutscores translates into classification 

as the highest group, while passing the lower and failing the upper is classified as the middle group. 

 

Composite hypothesis: the generalized likelihood ratio 

 The GLR is specified and calculated with the same methods as the fixed-point SPRT, with the 

exception that 1 and 2 are allowed to vary.  Rather than evaluate the likelihood function at each 

endpoint of the indifference region, instead it is evaluated at the highest points beyond the endpoints.  If 

the maximum of the likelihood function is outside the indifference region, that maximum will be utilized 

in the likelihood ratio for that side.  For example, in Figure 1 the maximum is to the right of the 
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indifference region, at 0.0, and will be utilized in the likelihood ratio.  The side without the maximum is 

evaluated the same as with the SPRT, as the highest likelihood to the left of 1 is at 1. 

 In the example of Figure 1, this modification to the likelihood ratio now produces a value of 

0.062/0.044 = 1.41.  Because this ratio is further from a ratio of 1.0 than the fixed SPRT value of 1.25, the 

classification can be made with more confidence given the same number of items, or with equal 

confidence given a fewer number of items.  The primary research question of this paper is whether this 

increase in efficiency comes with an increase in classification error (false positives and false negatives) as 

compared to other methods of pass/fail decisions, and if the efficiency is moderated by the width of the 

indifference region. 

 

Ability confidence intervals 

 Ability confidence intervals (ACI) is an alternative method of using the likelihood function to 

make a classification decision.  However, rather than considering the entire likelihood function, it makes a 

confidence interval around the maximum likelihood (or Bayesian) estimate of ability using the 

conditional standard error of measurement (SEM).  This can be expressed as (Thompson, 2009b; 

Hambleton & Swaminathan, 1985, Eq. 5.28): 

 

  ˆ ˆ( ) ( )j j jz SEM z SEM     (7) 

 

where zε is the normal deviate corresponding to a 1 - ε confidence interval, given α + β = ε for nominal 

error rates α and β.  For example, a 95% confidence interval entails zε = 1.96, with α =0.025, β = 0.025, 

and ε = 0.05.  While the SPRT and GLR differentiate examinees only at the cutscore, ACI evaluates 
across the spectrum of θ, wherever the current estimate lies.  Therefore, previous research (Spray & 

Reckase, 1996; Eggen & Straetmans, 2000; Thompson, 2009b) has shown that ACI operates more 

efficiently when items are selected adaptively at the current estimate, while the SPRT and GLR operate 

more efficiently when items are selected to maximize information at the cutscore. 

 For this study, the confidence intervals were calculated with two methods: theoretical and 

observed.  For the theoretical approach, model-predicted SEM is calculated using the test information 

function evaluated at the relevant θ regardless of response pattern (Embretson & Reise, 2000, Eq. 7A.6), 

 

  1/ ( )SEM TI       (8) 

 

 and θ is estimated using brute force methods by directly evaluating the likelihood function from -3.0 to 

+3.0 in intervals of 0.01 to find the empirical maximum.  In practice, it is more common to estimate θ 

with efficient Newton-Raphson methods (Embretson & Reise, 2000, p. 164), and calculate an observed 

SEM based on the second derivative of the likelihood function (Baker & Kim, 2004, Eq. 3.16): 
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Study 1 

 

 The study utilized a monte carlo simulation methodology, with 10,000 examinees simulated 

under each testing condition, to evaluate differences in efficiency and accuracy.  The population of 

examinees was randomly selected from a N(0,1) distribution.  With monte carlo simulation, item 

responses are generated by comparing a randomly generated number 0.0 < r < 1.0 to the probability of a 

correct response for each examinee to each item.  The probability is calculated using the item response 

function and the true examinee θ, which is known because it was generated.  For example, if there is a 

0.70 probability of a correct response, an r = 0.65 would produce a response of “correct’ and an r = 0.75 
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would produce a response of “incorrect.”  Responses are generated as each item is administered to the 

examinee in the simulation. 

 The independent variable was the design of the test.  The three primary levels investigated were 

the ACI, SPRT, and GLR variable-length termination criteria.  Fixed-form tests of 200 items, 100 items, 

and 50 items, with both number-correct and IRT maximum likelihood scoring, were included as a 

baseline.  The fixed forms were constructed by selecting items from the bank of 500 with the most 

information at the cutscore, producing tests with a highest possible level of differentiating capability.  The 

dependent variables are average test length (ATL), and percentage of correct classifications (PCC).  If a 

test is performing well, it will produce high PCC but low ATL, namely accurate decisions with only a few 

items. 

 Because the value of δ affects the results of the SPRT and GLR, it must be manipulated to 

provide an opportunity for adequate comparison.  Namely, a wide range of values was not arbitrarily 

selected, but methods were rather matched on observed PCC.  The ACI simulations were completed first 

with a 95% confidence interval, and then the SPRT and GLR simulations completed with δ varied until a 

similar PCC (95.7) was reached, which was 0.3.  Simulations were also completed with δ= 0.2 for an 

additional comparison. 

 The cutscore for the simulations was θ = -0.5, which corresponds to a pass rate of approximately 

69%, representing a mastery test where the majority of students typically pass.  For the fixed-form tests 

with number-correct scoring, this was converted to a raw cutscore using the test response function 

(Parshall, Spray, Kalohn, & Davey, 2002): 122.5 for the 200-item test, 63.85 for the 100-item test, and 

32.49 for the 50-item test.  The variable-length tests were constrained to have a minimum of 20 items and 

a maximum of 200 items.  A maximum is necessary to prevent the entire bank from being administered to 

examinees with true ability at the cutscore, because a decision would never be able to be made with 

confidence.  A minimum is not psychometrically necessary, but has a public relations function in that it 

protects against examinees failing after only a few items, possibly reducing complaints. 

 The bank for the test consisted of 500 items with IRT parameters to represent plausible values for 

a test designed to differentiate at a cutscore of -0.50.  The difficulty of the bank was centered on the 

cutscore, and the discrimination values were generated with a target mean of 0.70, which is typical for 

achievement tests.  The guessing parameter c was generated to have a mean of 0.25, representing 4-option 

multiple choice items.  The summary statistics for the generated parameters are presented in Table 1. 

 

Table 1: Summary statistics of item bank 

 

Statistic a b c 

Mean 0.716 -0.480 0.251 

SD 0.204 0.552 0.041 

 

 The results of the simulations are presented in Table 2.  ATL refers to the average number of 

items seen by each examinee; for the fixed-form tests, this is of course equal to the test length.  PCC is the 

percentage of examinees correctly classified, comparing the results of the test to the generated person 

parameter θ.  Type I errors are examinees that passed but should have failed, having a true generated θ 

below the cutscore, and Type II failed but should have passed. 

 As hypothesized, the variable-length methods produced short tests, with ATL ranging from 37.62 

to 55.77, while maintaining the level of accuracy produced by the longer fixed form tests that delivered 

two to four times as many items.  Specifically, the two likelihood ratio methods with δ = 0.2 had PCC 

approximately equivalent to the 200-item fixed test, but with only 48.41 and 55.77 items.  The 50-item 

fixed test entailed approximately as many items as the variable-length methods, but with notably 

decreased accuracy. 

 Also notable are the differences between the variable-length methods.  The SPRT and GLR 

produced shorter tests than ACI while maintaining accuracy.  The two ACI conditions required more than 
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50 items, with the intentionally matched PCC of approximately 95.75.  The SPRT and GLR produced 

equivalent accuracy with less than 40 items.   

 

Table 2: Average test length (ATL) and percent correctly classified (PCC) for each condition 

 

Test design Scoring ATL PCC Type I Type II 

200 item fixed Number-correct 200.00 96.10 1.81 2.09 

200 item fixed IRT 200.00 96.19 2.07 1.74 

100 item fixed Number-correct 100.00 95.19 2.56 2.25 

100 item fixed IRT 100.00 95.13 2.62 2.25 

50 item fixed Number-correct 50.00 93.62 3.60 2.78 

50 item fixed  IRT 50.00 93.46 3.24 3.30 

Ability confidence intervals (ACI) Theoretical SEM 51.65 95.73 2.57 1.70 

Ability confidence intervals (ACI) Observed SEM 54.61 95.78 2.51 1.71 

Sequential probability ratio test (SPRT) δ= 0.3 39.30 95.74 1.85 2.41 

Generalized likelihood ratio (GLR) δ= 0.3 37.62 95.73 2.03 2.24 

Sequential probability ratio test (SPRT) δ= 0.2 55.77 96.21 1.81 1.98 

Generalized likelihood ratio (GLR) δ= 0.2 48.41 96.06 2.01 1.93 

  

 There was a small but recognizable difference between the two methods of calculating ACI.  The 

two produced equivalent PCC, but utilizing the observed SEM and the more computationally efficient 

Newton-Raphson θ estimation required three more items, on average, than the model-predicted SEM 

calculated with the test information function and the empirical likelihood estimate. 

 The GLR was slightly more efficient than the SPRT; this gain in efficiency increases with a 

decrease in δ because a wide δ forces the GLR and SPRT to utilize the same calculations.  For example, 

the GLR produced a larger ratio with Figure 1, but if the indifference region in Figure 1 was -0.8 to 0.0, 

then the GLR and the SPRT would be equivalent.  Therefore, the GLR utilized only two fewer items on 

average with the wider indifference region (δ= 0.3), but there was a difference of seven items when δ = 

0.2. 

 This study demonstrates that the GLR performs as expected, namely highly similar to the point 

hypothesis SPRT, but with several fewer items, indicating an increase in efficiency.  This increase is 

greater with a narrower indifference region.  Study 2 will examine this effect further, focusing on the 

GLR and SPRT.  Both are much more efficient than fixed-form tests.   

 

Study 2 

 

 A similar monte carlo simulation was designed to further compare the GLR with the SPRT, while 

investigating the effect of indifference region width on efficiency by simultaneously comparing the 

observed classification error rates to the nominal rate.  Parameters were generated for a bank of 300 

items; fewer items were necessary because 200-item tests were not being created.  The descriptive 

statistics of the item parameters are shown in Table 1, and reflect the fact that the bank was again 

intended to provide a substantial number of items with difficulty near the cutscore of -0.50.  A 

distribution of examinees was also randomly generated, from a N(0,1) distribution.  PCC and ATL were 

again the dependent variables, with the practical test length constraints of a minimum of 20 and a 

maximum of 200. 

Table 3: Item parameter statistics 

 

Statistic a b c 

Mean 0.70 -0.50 0.25 

SD 0.20 0.51 0.04 
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 Besides the comparison of the two termination criteria, the width of the indifference region was 

an independent variable, manipulated by varying δ from 0.0 to 1.0 in increments of 0.1.  The results are 

presented in Figure 2 for a nominal error rate of 1% and in Figure 3 for a nominal error rate of 5%.  Note 

that while a GLR with δ = 0.0 is possible because it will search for values away from the cutscore, an 

SPRT with δ = 0.0 is impossible because the ratio is always 1.0 (both values exactly at the cutscore). 

 

Figure 2: ATL and PCC for 1% nominal error rate, comparing GLR and SPRT 

 

 
 

 

Figure 3: ATL and PCC for 5% nominal error rate, comparing GLR and SPRT 
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 With regards to the termination criteria, the GLR requires fewer items when δ is 0.3 or smaller, 

while the two methods perform equivalently with larger values of δ.  The detailed values for δ = 0.2 are 

presented in Table 4 to show this effect; here, the GLR required substantially fewer items (ATL) while 

maintaining accuracy (PCC).  This is concordant with the results of the first simulation study, as large 

values of δ force the same values to be selected for input into the likelihood ratio.   

 

Table 4: Results with δ = 0.2 

 

Termination Nominal δ ATL PCC 

GLR 99 0.2 67.90 96.02 

GLR 95 0.2 53.61 95.32 

SPRT 99 0.2 85.55 95.68 

SPRT 95 0.2 62.62 95.65 

 

However, note that PCC appears stable when δ is 0.3 or smaller, it decreases beyond 0.3.  

Moreover, ATL dropped dramatically with smaller values of δ, but successively larger values decreased 

ATL only slightly.  Increasing the size of the indifference region will greatly decrease the number of 

items needed to make classifications, but will also marginally decrease the accuracy of the test, and this 

effect depends on the range of δ in question.  It is therefore imperative that testing programs which 

employ the likelihood ratio as a termination criterion perform extensive simulation research to ensure that 

the drop in ATL is maximized while maintaining PCC at nominal levels.  Not doing so could lead to tests 

longer than necessary, or accuracy less than nominal levels. 

The maintenance of PCC near nominal levels is itself a substantial issue.  In Figure 3, the 

accuracy remained near nominal levels for the 5% condition while δ < 0.3.  However, for the 1% 

condition, observed accuracy was always lower than the nominal accuracy.  In fact, the highest observed 

PCC in Figure 2 was only 96.02 (in Table 4), well short of the nominal 99%.  Furthermore, as δ 

increased, the observed PCC dropped to approximately 92%.  This extreme disconnect between observed 

and nominal accuracy has been found in past research and warrants further research.  For example, Eggen 

(1999, Table 1) reported observed accuracy of approximately 95% with nominal levels of 90%, 85%, and 

80%. 

 

Discussion 

 

 The results of the first study demonstrate the well-known (Kingsbury & Weiss, 1983; Spray & 

Reckase, 1996; Eggen, 1999) result that variable-length testing methods are highly efficient in the context 

of pass/fail decisions.  While 100-item fixed-form tests produced approximately 95% accuracy, the SPRT 

and GLR could do so with less than 40 items on average.  While 200-item fixed-form tests produced more 

than 96% accuracy, the SPRT and GLR could do so with approximately 50 items on average. 

 Moreover, the likelihood-ratio approaches (SPRT and GLR) produced even shorter tests than 

ACI, as has been shown in previous research (Eggen & Straetmans, 2000; Thompson, 2009b).  However, 

the SPRT and GLR have one substantial disadvantage: the selection of items at the cutscore for each 

examinee means that each examinee receives the same test, as they would with a fixed-form approach.  

The adaptive item selection of ACI means that nearly every examinee sees a different set of items, aiding 

in test security by reducing overexposure of items.  Nevertheless, for many applications this disadvantage 

might be irrelevant. 

 Additionally, the GLR is always at least as efficient as the fixed-point SPRT while maintaining 

equivalent levels of accuracy.  If the value of δ is relatively large (> 0.3) then the two procedures are 

equivalent, but for smaller values there is a notable increase in efficiency with the GLR.  This suggests 

that the GLR be used in applied assessment programs rather than the SPRT, especially since the 

difference in algorithm is small. 
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 However, the most important result of this study is the strong effect that δ has on both the 

accuracy and efficiency of the test.  For this reason, the width of the indifference region should never be 

specified by the arbitrary methods often suggested: attempting to estimate the θ values corresponding to a 

minimal pass or a maximal failure, or even worse, simply adding and subtracting an arbitrarily chosen 

number δ.  Instead, a study such as this one should be conducted, designed based on actual characteristics 

of a testing program like bank size and examinee distribution, to determine the value of δ that produces 

the shortest test lengths while still maintaining the desired level of accuracy.  This is especially true given 

the finding that observed accuracy is not necessarily equal to, or even near, the nominal accuracy of the 

procedure. 

 While the variable-length approaches investigated in this study require the use of IRT, similar 

tests can also be designed with classical test theory (Rudner, 2002).  That has the advantage of smaller 

sample sizes for calibrating the item bank while still producing highly efficient CCTs, but has the 

drawback that it requires an independent verification of pass/fail for examinees in the calibration sample. 

 In summary, the GLR approach is optimal for testing programs that need to make a classification 

decision with as few items as possible, though fixed-form tests are still appropriate for many testing 

programs due to practical or content-distribution constraints.  However, the design of any CCTs require 

extensive simulation research to ensure that the test is as efficient as possible. 

 

Future Direction 

 

A possibility for future research is an integrated likelihood ratio.  Bayesian expectation a 

posteriori (EAP) estimation of θ takes into account asymmetry in the likelihood function by utilizing a 

weighted average, essentially an integration of the likelihood function.  Because using the 3PL will 

produce asymmetric likelihood functions, EAP can be useful.  This approach could be extended to 

classification by integrating the area below the curve to the left and right of the cutscore, then comparing 

the areas as a ratio.  However, the raised lower asymptote of the 3PL could affect this detrimentally. 

 Future research should also consider more complex underlying models, such as mixture models 

or models that incorporate response time.  Additional comparisons to other approaches could be made, 

such as decision theory methods (Rudner, 2002). 
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