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Introduction 
 Item response theory (IRT) is a psychometric paradigm for the construction, scoring, and 

analysis of test forms and items.  It offers several advantages over its predecessor, classical test 

theory, due in part to its greater sophistication.  However, this same sophistication can be 

perceived as a disadvantage due to the greater level of mathematical complexity.  One example 

of this is the scoring of examinees.  With IRT, examinees are no longer scored by the number of 

items they answer correctly.  Instead, IRT provides a precise estimate of their location on the 

underlying distribution of ability, analogous to the standard z scale.  The purpose of this paper is 

to provide a graphical introduction to the process of ability estimation with IRT. 

 The basic premise of IRT is that the probability of a correct or keyed response is a 

function of an underlying trait or ability, denoted by the Greek letter theta ( with a scale 

typically depicted as ranging from -3 to 3, with 0.0 representing average ability.  Figure 1 

presents an example of this function, called an item response function.  As the trait level 

increases from left to right, the probability of a correct response P(X) increases. 

 

Figure 1: Example IRF 

 
 

 

The probability of an incorrect response is represented by the complement of this function, 1 – 

P(X), as shown in Figure 2. 
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Figure 2: Example of 1 – P(X) 

 

The likelihood function 
 To score examinees with IRT, these functions – the IRF for a correct response and the 

complement for an incorrect response – are multiplied to obtain a single function referred to as 

the likelihood function (LF).  This presents the likelihood of each θ level given the responses of 

an examinee.  For example, if an examinee has one correct answer and one incorrect answer to 

the example item shown in Figures 1 and 2, these curves are multiplied across θ to produce the 

example found in Figure 3. 

 

Figure 3: Example likelihood function 

 
The likelihood function is defined as 
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 where u is a response vector of 1s and 0s of person j to items i numbered 1 through n.  

Note what this does to the exponents; a correct response denoted by uij = 1 means that P remains 

while Q drops out because any number to the (1-1) = 0 power is 1.0.  The opposite happens for 

an incorrect response denoted by uij = 0.  This is how the idea of multiplying IRFs and their 

compliments is operationalized.   

If both correct and incorrect responses are present, the likelihood function will tail off to 

0.0 towards the extremes, as seen in Figure 3.  The location of the likelihood function, whether it 

is centered on 0.0 or somewhere else on the x-axis, is a function of both the items that are 

presented to an examinee and the responses given.  A different location of the likelihood function 

leads to a different location of the maximum; this is how IRT provides precise θ estimates. 

 Some more detail regarding the figures will help explain this.  The items in Figures 1 and 

2 have a location parameter called bi of 0.0, as the middle of the curve for each is located at 0.0.  

If an examinee gets one item correct and one item incorrect at this location, then it makes sense 

that the examinee θ estimate (similar to location) is also 0.0, as seen in Figure 3.  If the two items 

had a location of -1.0, then the examinee would also have a θ estimate of -1.0.  If the two items 

had a location of 1.32, then the examinee would have a θ estimate of 1.32.  This becomes more 

complex as more items are administered, each of which will probably have a different location, 

but the concept of determining the maximum in Figure 3 remains the same. 

 The likelihood function is not only used in θ estimation.  It also provides an index of the 

error involved in estimating each person’s θ level, which is the standard error of measurement 

(SEM).  Whereas  estimation operates be determining the middle of the curve, SEM is based on 

the spread of the curve. A higher SEM indicates that the curve is more spread out, and therefore 

the score is less precise.   

 There are three approaches commonly used to estimate θ within this framework.  The 

predominant method of  estimation is called maximum likelihood, called so because it simply 

finds the highest point on the likelihood function and returns the value of  at which it occurs.  

This is marked by the red line in Figure 3; the  estimate is 0.0.  A common variant of this is the 

Bayesian modal estimation procedure, also called maximum a posteriori, or MAP, where this 

likelihood function is multiplied by an additional curve that represents an assumed population 

distribution.  This approach was utilized in Owen’s (1975) Bayesian adaptive testing algorithm.  

A further variant is to take this Bayesian-modified curve and rather than find the maximum 

point, find the average value as weighted by the function.  This is referred to as Bayesian 

expectation a posteriori (EAP). 

 The primary advantage to the Bayesian methods is that they work when an examinee has 

only correct or only incorrect responses, which is called a nonmixed response vector.  Suppose 

that an examinee has answered two items, both of them correctly.  Multiplying two IRFs like the 

curve in Figure 1 only produces a similarly shaped curve, one that increases indefinitely as a 

function of θ.  In that case, no maximum exists, so maximum likelihood is not possible.  

Multiplying the curve by a bell-shaped curve will give this function a maximum.  

 The Bayesian EAP method addresses a further issue: asymmetrical likelihood functions.  

The likelihood function in Figure 4 represents a typical shape found with 3PL items.  Because of 

the lower asymptote on the left-hand side, the likelihood function can be higher there than on the 

right-hand side.  Finding the simple maximum of the curve does not take this uneven distribution 

into account.     
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Figure 4:  Asymmetrical likelihood function 

 

 
 

 Instead, the EAP method finds the average of the curve (rather than the mode) by 

dividing it up into slices, similar to the Riemann integration of a curve.  The average of the 

values is then calculated.  This is demonstrated in the following figure, where more weight 

would be given to the slices on the left-hand side of the curve, leading to a EAP estimate that is 

slightly less than the MAP estimate. 

 

Figure 5: Bayesian EAP depiction 
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 So if the Bayesian methods address important issues, why are they not always preferred 

over the MLE?  The reason is that the Bayesian methods are biased.  By multiplying the 

likelihood function by another curve, a bit of arbitrariness is added, and if the Bayesian prior is 

the standard normal curve – which it often is – the θ estimates will be biased inward to a small 

extent.  The observed standard deviation of final θ estimates might be 0.94 instead of the 1.0 

assumed by the distribution. 

 

Finding the maximum 
 One of the most important algorithms in the application of IRT is that which is utilized to 

determine the maximum of the likelihood function.  This is a necessary component of both the 

MLE and Bayesian MAP methods; it is not utilized in Bayesian EAP.  The most straightforward 

approach would to be to evaluate the value of the likelihood function for every value of θ in the 

desired range to the desired level of precision.  For example, if the desired level of precision is 

0.001, the value of the likelihood function could be calculated from -4 to 4 at each point and the 

highest point recorded.  This is called the brute force method. However, this is computationally 

intensive, as is entails a total of 8,000 calculations.   

 Alternatively, an iterative algorithm could be applied to find the maximum with fewer 

required calculations.  Two iterative methods that are useful for this process are the bisection 

method and the Newton-Raphson method.  The bisection method is simpler, but not as efficient, 

and therefore the Newton-Raphson method serves as the primary iterative estimation algorithm. 

 

Bisection method 

 The bisection method operates, as would be expected, by dividing a range of the LF into 

two sections and evaluating the midpoint.  It was originally developed to find the root of any 

function, namely f(x)=0.  Because the maximum of a function is where the derivative is equal to 

0, the bisection method lends itself well to evaluating the derivative of the LF, but it can also be 

adapted to the LF itself. 

 For the derivative, the bisection method operates as follows.  For the first round of the 

iteration, a wide range is specified from a lower bound a to an upper bound b, such as -3 to +3.  

As long as the root of the derivative is between these points (the reason a wide range is needed), 

the value of the derivative at a will be positive and the value at b will be negative (Figure 6).  

 

Figure 6: Bisection method on the LF derivative 
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 Next, the midpoint m is found, which is 0 in the example.  The derivative is evaluated at 

this point, and if the value is negative, this implies that the root is between a and m, because f(a) 

is positive and f(m) is negative.  If the value is positive, it implies that the root is between m and 

b.  Based on this knowledge, we can update the range.  In the example, the value is negative, and 

therefore we can eliminate the possibility that the root is between m and b.  The midpoint m is 

then reassigned as the upper bound for the next iteration, and the process is repeated.  In the next 

iteration, we can see that the value of the derivative at the new midpoint -1.5 is positive, which 

means that -1.5 will be reassigned as the lower bound for the third iteration.  This process 

continues to a user-designated level of accuracy, such as 0.01. 

 The same type of iteration can be applied to the LF itself, as shown in Figure 7.  If the 

value of f(a) is greater than the value of f(b), this implies that the maximum is between a and m.  

The midpoint is again reassigned as the new upper bound, and the second round evaluates -3 to 0 

with a midpoint of 1.5.  Because f(0) > f(-3), the midpoint is reassigned as the lower bound for 

the third iteration.  Note that this is operating completely parallel to the bisection method applied 

to the derivative.  A further adaptation to make it more efficient would be to evaluate the value 

of the function at two points near to m, such as m + 0.1 and m – 0.1, and the section with the 

lower value is eliminated.  This approach would eliminate the problems due to asymmetry 

discussed below. 

 

Figure 7: Bisection method on the LF  

 

 
 

 

 

Newton-Raphson method 

 The iterative procedure that is often used to obtain maximum likelihood  estimates is the 

Newton-Raphson procedure.  The basic principle of this procedure is that it evaluates the first 

and second derivatives at a point on  that is the current iterative estimate, and these values can 

tell the procedure where on the LF the point is relative to the maximum.  The iteration then 

adjusts accordingly.  For example, the values can tell the procedure that the current estimate is 

only slightly below the maximum, and then the procedure adjusts upward by a small increment.  

It is therefore more efficient than the bisection method because the increments are variable rather 

than always being halves. 
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 The Newton-Raphson procedure is best explained graphically by dividing the LF into 

four sections.  First, draw a vertical line at the maximum.  Next draw vertical lines at each of the 

inflection points.  This will produce a figure like Figure 1. 

 

Figure 8: Example LF 

 

 
 

 

 The sections reflect what is occurring in terms of the slope of the function: 

 

 Section 1: Slope is increasing at an increasing rate  

 Section 2: Slope is increasing at a decreasing rate 

 Section 3: Slope is decreasing at an increasing rate 

 Section 4: Slope is decreasing at a decreasing rate. 

 

The first and second derivatives of the LF also reflect these sections, as seen in Figures 2 and 3. 

 

Figure 9: First derivative of example LF 
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Figure 10: Second derivative of example LF 

 

 
 

 The basic form of the Newton-Raphson iterative adjustment is , or the first 

derivative divided by the second derivative.  The four sections as presented above translate into 

four types of results for the Newton-Raphson with regards to the sign of the values: 

 

 Section 1: Positive/Positive = Positive result 

 Section 2: Positive/Negative = Negative result 

 Section 3: Negative/Negative = Positive result  

 Section 4: Negative/Positive = Negative result. 

 

If the current iterative estimate is in Section 1 or Section 2, then the adjustment must be in a 

positive direction.  The adjustment should be in a negative direction for Sections 3 and 4.  This 

occurs naturally when the estimate is in Sections 1 and 4, but not in Sections 2 and 3. 

 Therefore, a modification must be implemented to ensure that the adjustments are in the 

correct direction.  Given the results above, it is evident that one such modification is to assess the 

absolute value of the second derivative in the denominator.  This makes the denominator 

positive, which in turn provides a positive result in Section 2 and a negative result in Section 3. 

 The same issue is present when utilizing the log-likelihood function rather than the 

likelihood function.  However, the log of the LF has no inflection points (Figure 11), so it only 

has what are equivalent to Sections 2 and 3.  As these are the two sections that require a 

modification of the sign, a similar constraint must be placed on Newton-Raphson estimations of 

the maximum of the log-likelihood function. 

 An additional constraint that is often useful is to restrict the magnitude of the adjustment 

values.  The reason for this is that the second derivative crosses the x-axis twice and also 

asymptotes toward the x-axis twice.  In these situations, a very small value of the second 

derivative will be produced along with a relatively large value of the first derivative (see the 

values -1.0 and 1.0 in the figures).  Dividing a relatively large number by a very, very small 

number produces a very, very large number, which can send the iteration very far from where it 

needs to be.  Therefore, it is prudent to restrict the size of the iteration step to a modest value, 

such as only 0.5 or 1.0.   
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Figure 11: Natural log of the LF 

 

 
 

 A major benefit of the Newton-Raphson method is that it provides a basis for an estimate 

of the observed standard error of measurement (SEM) using the second derivative.  However, 

this can be calculated independently, and therefore can still be used if  is estimated with the 

bisection or brute force methods. 

 

 

Possible issues in estimation 
 As previously discussed, the brute force method is quite precise because it evaluates all 

possible values, but is extremely inefficient for the same reason.  This is the primary reason for 

the development of the bisection and Newton-Raphson methods for  estimation decades ago, 

when computers where capable of only a tiny fraction of the speed possible today.  However, 

given the speed of computers in the 21
st
 century – which number in the millions of instructions 

per second – this inefficiency might translate to a negligible difference in calculation time. 

 The iterative methods are very fast, but have the disadvantage that they can get “hung up” 

on issues that directly affect the logic of the iteration.  For instance, the bisection method, 

because it relies on symmetrical divisions of the LF, is susceptible to problems when the LF is 

asymmetrical.  As mentioned earlier, this is often the case when the 3PL is used because the 

lower asymptote leads to higher values on the left-hand side of the LF.  This is shown in Figure 

12.  Suppose that a = -3 and b = 1.5.  Because f(a) > f(b), the bisection method would eliminate 

everything to the right of m – but the maximum (-0.25) is contained in that section.  If the 

bisection method continued, the MLE would be -0.75. 
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Figure 12:  Asymmetrical likelihood function with inaccurate bisection 

 

 
 

 

 Note, however, that this problem only occurs when the actual LF or its log is utilized.  If 

the derivative is used, this is not an issue.  The derivative at m is still positive, so that the left-

hand side would be correctly eliminated. 

 One problem that affects both methods is equal values on either side.  In the bisection 

method with the LF, this occurs when f(a) = f(b), in which case the algorithm cannot choose 

which section to eliminate.  With the derivative, this is manifested as f(m) = 0, which is actually 

beneficial because then the MLE is found and the iteration can end early.  This presents another 

reason to utilize the derivative rather than the actual LF or its log. 

 A similar problem can occur with the Newton-Raphson method.  If the adjustment moves 

the next iteration to a point on the other side of the curve with the same values of the derivative 

and second derivative, the adjustment at this next round will be the same value, sending the 

subsequent round back to the original point.  The method will oscillate indefinitely between the 

two points.  To help prevent this, some type of unequal bounding can be implemented. 

 An additional problem that affects both iterative methods is the issue of local maxima.  In 

rare cases, the likelihood function is not strictly increasing on the left side and strictly decreasing 

on the right side.  There can be a small bump on either side where the derivative is zero, switches 

signs, and then switches again.  If one of the iterative methods finds itself in the range of this 

local maximum during the early rounds, it can get caught.  Because the iterative methods ignore 

the rest of the likelihood function, it can never realize that there is a higher maximum in a 

different range of . 
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Conclusions 
 In summary, there were seven methods discussed for  estimation: 

 

 1. MLE, brute force 

 2. MLE, bisection 

 3. MLE, Newton-Raphson 

 4. MAP, brute force 

 5. MAP, bisection 

 6. MAP, Newton-Raphson 

 7. EAP. 

 

This leads to the issue of which one to use, or which set to use in conjunction.  Because each 

method has advantages and disadvantages, it is often advantageous to utilize more than one 

method in software for  estimation.  If the Newton-Raphson method gets hung up on a local 

maximum, the only way to know so is to compare it to the results of another method.  Of course, 

because the bisection method is also iterative, it could also have gotten hung up on the same 

local maximum. 

 The brute force and EAP methods have the distinct advantage of not being susceptible to 

iterative issues simply because they are not iterative.  Therefore, one of these should be utilized 

as the comparison standard for the iterative methods.  This requires much more computation, but 

also provides the necessary measure of quality assurance.  Of course, this raises an important 

question: if a brute force method is used, which evaluates all possible  estimates to a desired 

level of accuracy, is it even necessary to employ one of the shortcut iterative methods?  Such 

discussions are an important aspect of developing software for  estimation. 

 

 

ASC is the leading source for software regarding IRT and computerized 

adaptive testing (CAT).  Xcalibre 4 is the most user-friendly and 

comprehensive IRT analysis software available: a free trial copy is available 

at http://www.assess.com/xcart/product.php?productid=569.  
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