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The process of constructing a fixed-length conventional test frequently focuses on maximizing internal 
consistency reliability by selecting test items that are of average difficulty and high discrimination (a 
―peaked‖ test).  The effect of constructing such a test, when viewed from the perspective of item response 
theory, is test scores that are precise for examinees whose trait levels are near the point at which the test is 
peaked; as examinee trait levels deviate from the mean, the precision of their scores decreases 
substantially.  Results of a small simulation study demonstrate that when peaked tests are ―off target‖ for 
an examinee, their scores are biased and have spuriously high standard deviations, reflecting substantial 
amounts of error.  These errors can reduce the correlations of these kinds of scores with other variables 
and adversely affect the results of standard statistical tests.  By contrast, scores from adaptive tests are 
essentially unbiased and have standard deviations that are much closer to true values.  Basic concepts of 
adaptive testing are introduced and fully adaptive computerized tests (CATs) based on IRT are described.  
Several examples of response records from CATs are discussed to illustrate how CATs function.  Some 
operational issues, including item exposure, content balancing, and enemy items are also briefly 
discussed.  It is concluded that because CAT constructs a unique test for examinee, scores from CATs will 
be more precise and should provide better data for social science research and applications. 
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 A considerable amount of social science data is obtained using methods of 
psychological measurement.  These methods include tests, inventories, and scales used 
to measure ability, achievement, proficiency, personality, attitudes, and a variety of 
other variables of interest to researchers and practitioners in psychology, education, 
sociology, political science, and other disciplines and applications.  The majority of these 
instruments were developed by classical test theory methods. 
 Classical test theory (CTT; e.g., Gulliksen, 1950; Allen & Yen, 1979/2002) is designed 
for the development of conventional tests—measuring instruments that use a fixed set of 
questions/items that are selected based on data from a target group of respondents.  A 
trial set of test items is administered to the group and the resulting data are used for an 
―item analysis,‖  in which two types of statistics are typically computed for each item: (1) 
item difficulty, defined as the proportion of respondents who answered the item in the 
keyed (or correct) direction, or for a rating scale type of item the mean total score for a 
given item response; and (2) item discrimination, defined as the correlation of the item 
response with total score on the scale to which the item belongs.  The next phase of item 
analysis typically is to select items that have item difficulties (or means) near the center 
of the range of item difficulties.  For dichotomously scored items (correct/incorrect, 
keyed/non-keyed), this means selecting items with proportion correct near .50; for 
rating scale items, it means selecting items with mean scores near the center of the 
rating scale weight range.  Items with extreme means or proportions are usually deleted 
from the measuring instrument.  The next step in an item analysis is to delete items that 
have low correlations with total scores.   
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 The objective of these two steps in a item analysis for conventional tests is to 
increase the internal consistency reliability of the scale or instrument, as reflected in 
indices such as Cronbach‘s alpha (Cronbach, 1951).  This type of reliability is increased 
by eliminating items with extreme difficulties, because these items have low variance 
and by eliminating them the variance of the total score is increased, since the total score 
is based on all items; increasing the variance of total scores relative to the number of 
items increases reliability.  Reliability is also increased by eliminating items with low 
correlations with total score, because internal reliability coefficients are proportional to 
the average item intercorrelation and the item-total correlation is proportional to the 
average correlation of an item with the other items.  The process of refining such a 
measuring instrument involves recomputing reliability as these two steps are 
implemented and ending the instrument refinement process when either a sufficiently 
high level of reliability is reached, or eliminating additional items results in only trivial 
increases in reliability.  Reliability in CTT can be thought of as ―precision‖ of 
measurement since a complementary function of reliability can be expressed as 
―standard error of measurement.‖  Reliability in CTT is computed for a specified set of 
test items from data collected on a particular group of examinees.  It is a single value (as 
is the standard error of measurement derived from it) for that set of items measuring 
that group of individuals. 

A Perspective From Item Response Theory 

 Although these instrument development procedures have been in use for almost 100 
years, their full implications with respect to the nature of the resulting measurements 
were not evident until the more modern methods of item response theory (IRT) became 
available in the mid 1970s.  IRT is a family of mathematical models that formalize how 
individuals respond to items in psychological measuring instruments (de Ayala, 2009; 
Embretson & Reise, 2000).  These models include models for dichotomously scored 
items as well as rating scale items and other types of items that result in multi-category 
(polytomous) responses.  IRT includes some concepts that are not part of classical test 
methods, and some of these concepts can be applied to describe the effects of 
constructing instruments using CTT test construction procedures. 
 One of these concepts is test information.  Information in IRT replaces the concept 
of reliability used in CTT.  It can also be interpreted as ―precision‖ of measurement, but 
it differs in several ways from CTT‘s ―precision‖—higher information means more 
precision in differentiating two closely contiguous levels of the variable being measured. 
(In IRT, the variable is generally referred to as a ―trait‖ in a very broad sense—it 
represents any unidimensional variable, whether ability, aptitude, attitude, or 
personality variable, and is typically symbolized with the Greek letter θ).  Although CTT 
reliability is a constant for a set of test items applied to a group of individuals—every 
score computed from that set of items has the same precision or error of measurement—
information in IRT is a function that allows precision to vary at different levels of θ.  
Similar to reliability in CTT, test information in IRT can be converted to an error of 

measurement, but that error of measurement is a function of  level, not a single value.  
The standard error of measurement (SEM) function is obtained by taking the reciprocal 

of the square root of information at each value of .  Thus, in IRT there is not one SEM 
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for a given set of items but rather an infinite number, potentially a different value for 
each potential level of θ based on a given set of items. 
 Figure 1a shows the test information function for a 50-item typically constructed 
conventional test.  The 50 items are highly discriminating items that all have item 
difficulties around .50, resulting in a ―peaked‖ test characteristic of conventional test 
development procedures.  As Figure 1a shows, the information is high and maximum at 
the center of the θ scale (θ = 0.0) and drops rapidly as θ moves away from the center.  
Figure 1b shows the conditional SEM function for the same test.  As the figure shows, 

the SEM is smallest (about 0.12) at the center of the  distribution and increases rapidly 

for examinees with θs above or below the mean, becoming greater than 0.50 at  = 1.8.  
These observations show that conventionally constructed measuring instruments are 
designed to measure well at a point (typically the mean of the score distribution) but, 
because they are based on a fixed set of items selected to measure around that point, 
they measure increasing poorly for individuals whose scores deviate from that point, 
with levels of measurement error increasing rapidly with increasing distance from the 
score mean.  Thus, scores near the mean of the distribution are relatively precise, but 
scores away from the mean have considerable error associated with them. 
 
Effects of Measurement Error on Score Variability  
 
 Although not widely understood, measurement error, even in CTT, operates to 
artificially increase score variability, but the increase is due to random factors.  Since 
random variability (i.e., measurement error) by definition is ―noise,‖ the increased 
variability in CTT test scores can serve to lower the correlation of test scores with other 
variables and also affect the results of other statistical analyses using error-laden scores.  
Random data will not correlate with other variables (as recognized by CTT‘s ―correction 
for attenuation‖), thus reducing the predictive validity of CTT scores.  Similarly, random 
variability increases the ―error‖ terms in tests of mean differences and related analyses, 
also reducing the ability of the scores to reflect mean differences in research studies. 
 Figure 2 shows the effect of error of measurement from conventional tests on test 
scores as the examinee‘s true trait level deviates from the point at which a conventional 
test is peaked.  These data were derived from a small monte-carlo simulation study 
using a 50-item peaked conventional test, similar to that shown in Figure 1, 

administered to examinees at trait ( ) levels distributed closely around the point on a 
standard score scale (mean = 0.0, standard deviation = 1.0) where the test was peaked 

( = 0.0), and for examinees whose true  levels deviated from the test, at  = .60, 1.2, 
1.8, and 2.4.  These results are contrasted with those from a computerized adaptive test 
(CAT; discussed below) that also administered a 50-item test selected dynamically for 
each examinee from a larger item bank.  Number-correct scores on the conventional test 

were converted to the IRT  (standard score) metric so that they could be compared with 

the true s and the  estimates from the CATs. 
 Figure 2a shows the effects of error of measurement on mean test scores expressed 
as bias—the mean difference between estimated scores and true scores.  When the 

examinee s are clustered around the value where the test is peaked ( = 0.0), scores 
from  the peaked  conventional  tests  (red bar)  are  unbiased.    This is also the  point at 
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a. Test Information Function 

 (Standard Scores) 

b. Test Standard Error of Measurement Function 

 
 

 
Figure 1.  IRT Functions for a Peaked Conventional Test 

 (Standard Scores) 
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which test information is maximum (Figure 1a) and test standard error (Figure 1b) is 

minimum.  When mean   = 0.6, peaked test scores are nearly unbiased.  However, as 

test information falls off around     = 1.20 and the test SEM doubles, mean bias of the 

peaked test scores is 0.20.  For mean   = 1.80 (almost two SDs above the mean), the 

SEM has quadrupled and the true mean is overestimated by 0.50  units.  By contrast, 

the green bar show that the CAT  estimates were essentially unbiased regardless of the 

 levels of the examinees. 
 Figure 2b illustrates the effects of conditional errors of measurement on the SDs of 
the converted number-correct scores.  The first bar in each set in the figure is the SD of 

true  (a constant value of about 0.13, approximately equivalent to the test SEM at  = 

0.0); the second bar is the SD of  estimates for CAT; and the third the SD of converted 

number-correct scores from the conventional test.  When mean examinee  matched the 

difficulty of the test ( = 0.0), both the conventional test and the CAT had essentially 

equal SDs that slightly over-estimated true .  As  deviated from 0.0, the SDs for the 
CAT remained essentially equal, reflecting the constant error of measurement 
characteristic of CATs.  By contrast, the SDs of the peaked conventional test increased 

with increases in .  At  = 1.20, the SD of number-correct scores was 0.62—almost five 

times the true SD.  At  = 1.80, the SD of observed number-correct scores was 0.76—

almost six times the true SDs.  The decline in SD at  = 2.40 is due to a ceiling effect on 
the number-correct scores. 
 These results show substantial bias in number-correct test scores and significant 
artifactual increases in score variability from conventional tests when administered to 
examinees whose trait levels do not match the difficulty of the test.  These spurious 
effects increase as examinees deviate from the point at which the test is peaked.  In a 
given sample of examinees, however, the actual effects of errors of measurement of this 
type will be unknown because (1) number-correct scores are not error-free indicators of 
true trait levels, and (2) the true trait distribution is unknown.  Embretson (1996) and 
Kang and Waller (2005) also demonstrated, in computer simulation, the negative effects 
on conventional test scores of ―test inappropriateness‖—the ―off-target‖ use of 
conventional tests—in the context of detecting interactions in ANOVA analyses and in 
moderated multiple regression. 
 It is obvious that there can be substantial measurement error in test scores from 
peaked conventional tests and that the error can have serious detrimental effects on 
conclusions drawn from the use of those measurements.  By contrast, Figure 2 shows 
that CATs are not susceptible to these effects. 

A Real-Data Example 

Only one study appears to have examined, using real data, the effects of the more 
precise scores of CAT in comparison to those of conventionally administered tests.  
Gibbons, Weiss, et al. (2008), developed a CAT version of a psychiatric scale—the Mood 
and Anxiety Spectrum Scales (MASS)—designed to measure mood and three other 
important psychiatric variables.  The MASS, developed using CTT procedures applicable 
to developing personality inventories, consists of 626 yes/no items that result in an 
overall score and four subscores.  The authors applied CAT to the MASS using a bifactor 

CAT algorithm with maximum information item selection, Bayesian  estimation, and a 
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Figure 2.  Converted Number-Correct Scores for a Peaked Conventional Test and CAT 

 Estimates at Five Levels of  
 

  (Standard Scores) 

Bias 



COMPUTERIZED ADAPTIVE TESTING 

 7 

SE = .30 termination criterion for the general factor.  Results indicated a 95% reduction 
in scale length for the general scale as well reductions of 85% or more for each of the 
four subscales.  
 Scores on the Mood scale were contrasted for two diagnostic groups—with and 
without independently determined bipolar disorder.  Conventional scoring of the 161-
item Mood scale resulted in a significant difference between the mean scores of the two 
groups:  t = 3.20, df = 154, p < .003, an effect size of .63 SD units.  By contrast, the CAT 
required an average of only 27 items (an 83% reduction in scale length) and resulted in t 
= 6.00, df = 154, p < .001 for an effect size of 1.19 SD units.  Thus, the CAT scores 
identified an effect almost twice as large as that of the conventional scores, as a result of 

the greater precision of  estimates—due to a reduction in error variability—obtained by 
the CATs.  
 
Basics of Adaptive Testing 
 
Contrary to popular belief, adaptive testing is not new—although CAT is obviously 
relatively recent.  The basic principles of CAT were articulated and implemented by 
Alfred Binet in 1905 in what later became the Stanford-Binet IQ test (Binet & Simon, 
1905).  By contrast, the conventional fixed-form paper-and-pencil test was not widely 
implemented until around 1918 when it was used to efficiently screen military results for 
the U. S. armed forces in World War I (Dubois, 1970).  Its use then expanded 
dramatically over the years until the paper-and-pencil test dominated psychological and 
educational testing for most of the twentieth century. 
 In intelligence testing, the Stanford-Binet adaptive test has been considered the 
―gold standard‖ against which the vast majority of subsequent intelligence tests have 
been judged.  Binet‘s test, individually administered by a trained psychologist, 
incorporates all the characteristics of current adaptive tests, but obviously in a different 
form than contemporary CATs.  An adaptive test is comprised of five characteristics that 
differentiate it from conventional tests: 
 

1. It is based on an item bank with test items of known psychometric/statistical 
characteristics.  The item bank is typically a wide-ranging bank that covers a 
defined range of the trait to be measured. 

2. Test administration can use information available on a given examinee to select a 
starting point for the examinee in the item bank—not all examinees are required 
to start with the same item or item set. 

3. Items are scored as they are administered and a test score can be derived from 
different subsets of items given to different examinees.  

4. Some type of rule is used to select subsequent items based on an examinee‘s 
scored responses to previous items. 

5. An examinee‘s test is ended when a prespecified termination criterion is 
reached—a fixed number of items is not necessarily administered to every 
examinee. 

 
As a result of the last four characteristics, an adaptive test is an individualized test.  
Examinees need not start with the same items, each examinee can receive different 
subsets of items, and examinees can receive different numbers of items from the bank.  
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An adaptive test is dynamic—it adjusts the difficulty of the test administered to the trait 
level of the examinee as the test is being administered. 
 
Binet’s Adaptive Test 
 
 Figure 3 is a schematic representation of Binet‘s adaptive test administered to a 
single examinee.  The item bank for this hypothetical test consists of 210 items 
organized in 21 ―mental age‖ levels (with 10 items per level) at half-year intervals from 5 
to 15.  Binet defined the ‗mental age‖ of a test item as the chronological age of a group of 
examinees who answered his free-response test questions correctly 50% of the time.  
Thus, for example, if approximately 50% of a group of 10-year-old children answered a 
given test item correctly, that item would be placed in the 10-year old ―mental age‖ 
group of items; the same item might be too difficult for 9-year-old children (only 35% 
might correctly answer it) or too easy for 11-year-old children (85% might correctly 
answer it). 
 

 
Figure 3.  A Schematic Representation of a Binet Adaptive Test 
 
 Given an item bank structured in this way, the first step in adminstering the test to a 
given child is to select a starting level to begin the test.  Similar to today‘s much more 
sophisiticated adaptive tests, a Binet test allows the use of prior information to select the 
first item for the test—this is the first aspect of adapting the test to a given examinee.  If 
the examiner knows something about the child that is relevant to her/his probable 
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performance on the test, that information can be used to select a starting level for the 
test.  In this hypothetical example, although the child‘s chronological age was 8 years, 
the examiner might have information to indicate that the child is thought of as ―bright,‖ 
so the test was begun at the 9-year mental age level; in the absence of that information, 
the test would likely have started at the 8-year level.  
 Once the starting level is selected, the first item at that level is administered and 
immediately scored, in this case correct (1+).  Succeeding items at the current level are 
similarly administered and scored, with a result at Mental Age 9 of six out of 10 items 
correctly answered for a proportion correct of 0.6.  At this point, the examiner is faced 
with a second adaptive decision:  Should the test continue by administering easier items 
in a search for the child‘s ―basal level‖—the mental age at which the child answers all the 
items correctly—or should more difficult items be administered to attempt to determine 
the ―ceiling level‖—the mental age level at which all items are answered correctly? 
 In this example, the examiner chose to identify a basal level first, so items at the next 
lower difficulty level (Mental Age 8.5) were administered.  Each item was scored 
immediately by the examiner, and the result was a proportion correct of 0.70.  Because 
this result did not identify a basal level, the next level of easier items (Mental Age 8.0) 
was selected and those items administered and scored with a resulting 0.80 correct.  
Finally, after further adapting the level of difficulty to the child being tested by dropping 
down one more level of difficulty, the child correctly answered all ten items at Mental 
Age 7.5 and a basal level was established.  This result indicated to the examiner that it 
was not necessary to administer any easier items, so all items at Mental Age 7 and below 
(a total of 50 items) were skipped for this child. 
 Having identified the child‘s basal level, the examiner then proceeded to identify the 
ceiling level—the level of difficulty that identifies the child‘s upper limit of ability.  Since 
all items at Mental Ages 7.5 through 9 had been administered, the test was adapted by 
administering items at the next available level above Mental Age 9.  Thus, the ten items 
at Mental Age 9.5 were administered and scored, with a resulting proportion correct of 
0.20.  Because this level of performance did not identify a ceiling level, items of Mental 
Age 10 were administered.  The resulting 0.0 proportion correct identified the ceiling 
level, and the remaining 100 more difficult items in the bank were not administered.   
Finally, a ―mental age‖ score is computed by a weighted average of the mental ages of 
correctly answered items, this result is divided by the child‘s chronological age, and then 
is multiplied by 100 to arrive at the child‘s ―I.Q.‖ 
 The adaptive procedure incorporated into a Binet-type test essentially identifies the 
effective range of item difficulty for each examinee.  Examinees who are capable of 
answering more difficult items will be administered those items; examinees who are 
unable to answer difficult items will be given easier items.  Thus, different examinees 
will receive different subsets of items drawn from the pre-calibrated item bank and, with 
the exception of incorrect starting levels, will receive a minimum number of items that 
are too difficult for them or those that are too easy.  As a consequence, adaptive testing 
is efficient—it administers only those items necessary to measure a given examinee and 
eliminates most items that provide little or no information about the examinee‘s ability 
level.  The efficiency is illustrated in this example:  Without using an adaptive 
procedure, all 210 items would have had to be administered to this child to obtain an 
adequate measure of ability.  But the adaptive testing procedure accomplished the 
measurement objective in only 60 items, eliminating 50 items that were too easy for the 
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child (and therefore provided no information about her/his ability level) and 100 items 
that were too difficult and similarly uninformative.  The resulting 60-item test achieved 
a 71% reduction in test length from administering the entire item bank as a fixed-length 
conventional test. One important characteristic of an adaptive test is that the use of 
variable termination criteria will result in different length tests for different examinees.  
Figure 4 shows, for three different students whose mental age scores were similar, a 
schematic of the number of items administered to each student.  Student A, whose 
hypothetical response record is shown in Figure 3, received items that ranged from 
Mental Age 7.5 through 10; Student E received items only for Mental Ages 8.5, 9, and 
9.5; and Student F received items from Mental Ages from 6.5 through 11.5.  Clearly, 
Student E is measured with the most precision (his/her score is more certain) than 
either of the other two students, and Student F‘s mental age score will be the least 
precise—this student is interacting with the item bank in a manner different from the 
other two students.  Thus, an adaptive test can yield not only a score estimate, but an 
indicator of the precision associated with that score. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Ranges of Items Administered to Three Students on a Binet-Type Test 
 

 Although Binet‘s test has been extremely useful for the purposes for which it was 
developed, it is not without its problems.  First, the test is administered individually by a 
psychologist, making its widespread application limited due to cost and the relative 
unavailability of trained administrators.  Second, although it makes efficient use of an 
item bank, it is still inefficient in some respects.  For example, it requires that all items 
at a given mental age be administered before an adaptation occurs, making it only 
partially adaptive.  As a consequence, if a test administrator underestimates (or 
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overestimates) an examinee‘s actual mental age by several levels, it might require (in the 
example shown) several blocks of ten items before a basal or ceiling level is obtained, 
thus unnecessarily lengthening the test and reducing its efficiency.  Third, although the 
test yields a subjective indicator of the precision of a test score for a given examinee, it 
has no explicit mechanism for controlling score precision. 
 
Fully Adaptive Computerized Adaptive Testing 
 
 The problems with Binet‘s tests were resolved with the introduction of computers 
into the testing process in the early 1970s (e.g., Weiss, 1973) and have been refined into 
highly efficient and effective procedures for measuring individuals.  Modern fully 
adaptive CAT is based on item response theory (IRT), a family of mathematical models 
that describe how examinees respond to test items of various kinds (e.g., DeAyala, 2009, 
Embretson & Reise, 2000).  These models can be applied to items that are scored 
correct or incorrect (or ―keyed/not-keyed‖), items scored by assigning partial credit to 
responses to multiple-choice items, or to rating scale items used to measure a wide 
variety of attitudes, perceptions, and personality variables.  By combining IRT with the 
test delivery capabilities of computers, fully adaptive CAT allows item responses to be 
scored immediately and adaptation to occur after each item is administered.  IRT also 
allows scores, and associated error bands for those scores, to be calculated after each 
item is administered and that information can be used to select the next item or to end 
the test for a given examinee. 
 
 Item bank.  As with the Binet test, the first step in implementing an IRT-based 
CAT is to develop an item bank with psychometric data on the items.  In contrast to the 
Binet bank, however, a fully adaptive CAT item bank is not structured, although some 
forms of partially adaptive CATs use structured item banks based on IRT item data (e.g, 
Chang, Qian, & Ying, 1999; Chang & van der Linden, 2003; Zenisky, Hambleton, & 
Luecht, 2010).  In IRT, test item ―difficulty‖ and ―discrimination‖ are defined differently 
than they are in CTT, but for purposes of CAT are combined into an item information 
function (IIF). Similar to test information functions, like that shown in Figure 1a, item 
information is a function that reflects how precisely a single test item measures at 

various points along the  continuum.  Higher information indicates greater precision 
and low information indicates a lack of precision.  Figure 5 shows IIFs for four items. 

The location of the curve along the  axis reflects the difficulty of the item.  Thus, Item 1 

is the least difficult because it is located at the lower (negative) end of the  continuum, 
and Item 4 is the most difficult.  The height of the IIF at its maximum reflects the 

discrimination of the item—how well it differentiates between examinees whose true  
levels are close together; Item 1 is the most discriminating and Item 4 is the least.  A 
CAT item bank for measuring a particular variable might have as many as 200 or more 
items, and IIFs are calculated for each item. 
 Starting a CAT.  The second step in implementing a CAT is to identify some rule 
for starting the test for an examinee.  As with the Binet test, the first item to be given to 
an examinee can be based on prior information about the examinee, it can be the same 
for all examinees, or it can be randomly selected from a set of items within a limited 
range of the trait continuum.  Prior information, if accurate, will increase the efficiency 
of a CAT; on the other hand, in a fully adaptive CAT, incorrect prior information will 
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reduce its efficiently only marginally since (as will be shown below) CATs can recover 
quickly from incorrect starting points.  Consequently, randomly selected starting items 
will have little effect on CATs and will serve to reduce ―item exposure,‖ which can be 
important in CATs that are used to make high-stakes decision about examinees. If a 
constant starting item is used, all examinees will receive the same first item and will also 
see a restricted range of items for the first few items in the test. Dichotomously Scored s 

Figure 5.  IFFs for Four Dichotomously Scored Items 
 

 Estimating .  In fully adaptive CAT, an examinee‘s  level is estimated after each 

item is administered and immediately scored.  Using IRT  estimation methods, an 

examinee‘s   level can be estimated after a single item is administered or after two or 

more items are administered.  The general method for estimating  in IRT uses 
maximum likelihood estimation (de Ayala, 2009, pp. 347-355).  However, when only 
one scored item response is available at the beginning of a CAT (or, if several items have 
been administered and they have all been answered either correctly or incorrectly) the 
maximum likelihood procedure must be modified temporarily in order to obtain a finite 

 estimate. This modification, which temporarily assumes that   for a group of 
examinees is normally distributed, is called Bayesian estimation (de Ayala, pp. 77-79).  

The Bayesian   estimate after the first item is administered is then used to select the 

next item for that examinee (although sometimes an arbitrary increase or decrease in  
is used in place of a Bayesian estimate).  If the examinee correctly answers the first item 

(or answers in the keyed direction if there is no ―correct‖ answer), the examinee‘s  

estimate will increase; if the answer is not correct (or keyed), the  estimate will 
decrease. 

 The  estimation process continues as new items are selected and scored, with  
estimated anew after each item response.  Once a mixed response pattern is obtained 
(e.g., 01, where 1 is a correct/keyed response and 0 is an incorrect/not-keyed response) 
the normal distribution assumption is no longer required and non-Bayesian maximum 
likelihood estimation is used.  One major advantage of maximum likelihood estimation 

of  is that it takes into account all the information in an examinee‘s responses in 
conjunction with all the information available on each test item.  Thus, for example, if 
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an examinee correctly answers a difficult item, his/her  estimate will increase more 
than if he/she correctly answers an easier items.  Similarly, if an examinee incorrectly 

answers an easy item, his/her  estimate will decrease more than it he/she had 
incorrectly answered a more difficult item.  As a consequence, IRT scoring will provide 

different   estimates for four items answered 1100 versus the same items answered 

0011—the number-correct score cannot differentiate these two examinees, but IRT  

estimation will.  A second advantage of IRT  estimation is that it will provide a 

standard error of the  estimate each time  is estimated.  These empirical standard 

errors reflect the confidence that the test user can have in a given  estimate and can be 
used to end a CAT for an examinee. 
 Item selection.  As indicated, fully adaptive CAT is differentiated from other forms 

of CAT in that items are selected, administered, and scored one at a time,  is estimated 
after each item is given, and a new item is selected to continue the test.  Item selection is 
based on the IIFs for all the unadministered items in the bank.  At each stage of the 

CAT—i.e., after each  estimate—the next item to be selected is the unadministered item 

at the examinee‘s current  level that has the highest level of item information; this 

process is known as maximum information item selection.  Thus, for a given  estimate, 

in effect the information available from each item given that  estimate is computed and 
the previously unused item (for that examinee) with the highest information is selected 
and administered.  As it turns out, that item is the item that will maximally reduce the 

error of the next  estimate obtained after that item response is scored.  This property of 

the CAT process typically results in two outcomes: (1) differences in successive  
estimates tend to decrease as more items are administered, and (2) the standard errors 

associated with the successive  estimates will tend to decrease and converge 
throughout the CAT. 
 Figure 6 illustrates maximum information item selection for a hypothetical set of 10 
items (obviously a real item bank will have many more items).  Item 9 is the most 
discriminating item (its IIF has the highest peak) and Item 7 is the least discriminating 
item (its IIF is the flattest); Item 10 is the most difficult (it provides information for high 

 examinees) and item 1 is the least difficult (it differentiates only among low  

examinees). The vertical dashed line in Figure 6a shows the starting  estimate ( 0̂ ) of 

0.0 at the beginning of the CAT.  Of the three items that provide non-zero values of 

information at  = 0.0 (Items 5, 6, and 7), Item 6 has the maximum amount of 

information, so that item is selected from the bank, administered and scored, and  is 

estimated (in this case using the Bayesian prior distribution), resulting in 1̂ .  In this 

example, 1̂ = 1.0, which resulted from an incorrect response to Item 6. Figure 6b shows 

the item bank after Item 6 has been removed and the vertical dashed line indicates that 

five items—Items 2, 3, 4, 5, and 7—had non-zero information at 1̂ , and that Item 4 had 

the highest IIF at that point.  Therefore, Item 4 is displayed, the answer recorded and 

scored, and  is re-estimated.  The figure shows an increase in ̂ (resulting from a 

correct response) to about 2̂ = 0.50, where Figure 6c shows that Item 5 provides 

maximum information.  The process continues—the selected item is administered, 

scored,  is re-estimated (using all the item responses available), and the next item 
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providing maximum information at the current   estimate is administered and removed 
from the bank—until a termination criterion is reached. 
 
 

a. 10-Item Bank at the Start of a CAT 
            

 
 

 

b. One item Administered 
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c. Two Items Administered 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Maximum Information CAT Item Selection 
 
 
 Ending a CAT.  A properly implemented CAT uses a variable termination criterion 
consistent with the purpose of testing.  CATs can be used for a number of purposes, 
including: 

1. Measuring individuals to obtain scores that are used to evaluate the examinee‘s 
level of functioning on some trait of interest.  Such scores might be used for 
counseling purposes, clinical evaluation, in schools, in a variety of other settings 
where an individual‘s level of functioning is important information, or in research 
studies.  So that scores of individuals will be comparable in terms of quality, or to 
minimize the kinds of error variability described above, such scores should be of 
equal precision across individuals. 

2. Classifying individuals based on one or more score cutoff values.  In this case, test 
scores are used to determine if an examinee has mastered or not mastered a body 
of knowledge, has passed or not passed a course of study, or qualifies or does not 
qualify for a particular employment or educational opportunity based on 
knowledge or skills.  Classifications can also be made based on multiple score 
cutoff values, such as in the assignment of school grades or proficiency 
categories. 

3. Measuring individual change, growth, or decline (or lack thereof).  In this type of 
application, precise scores are necessary at two or more time points to obtain 
accurate measures of change. 
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 The termination criterion applied in a fully adaptive CAT will differ for each of these 
three testing applications.  When the objective is to measure each examinee to the same 
degree of precision, CATs are typically ended when the observed standard error 

associated with the  estimates reaches a predefined value.  Thus, for example, a CAT 
can be ended when every examinee‘s SEM is less than or equal to 0.25.  This would 

result in  estimates that had 95% confidence intervals that spanned a half  unit in 

either direction , e.g., a  estimate of 1.0 would have a (95%) error band that ranged 
from 0.5 to 1.5.  Because of variations in the information structure of an item bank at 

various levels of , and because of individual differences in the consistency with which 
examinees answer test items, obtaining such equiprecise measurements will require that 
the number of items administered to each examinee be allowed to vary.  
 Testing for classification uses a different CAT termination criterion.  After a cutoff 

score has been expressed on the  scale, and a desired level of classification accuracy is 

determined, each successive  estimate in a CAT is bounded by the appropriate SEM 
error band.  For example, if a 95% confidence classification is desired, the error band 

would be 2 standard errors.  As each item is administered,  is re-estimated and the 
new error band constructed around it.  Testing continues until (after some prespecified 

minimum number of items) the error band for a  estimate is entirely above the cutoff 
score or below it.  When this occurs, a ―high confidence‖ decision can be made from the 
CAT results, which will be equal to or better than the prespecified level of classification 
accuracy.  Again, to obtain this objective, the number of items administered to each 
examinee must be permitted to vary.  
 Measuring individual change has been particularly troublesome in psychological 
measurement due to the unreliability of change scores (e.g., Cronbach & Furby, 1970) 
and floor and ceiling effects that occur with scores from conventional tests.  Using CAT 
with a specialized termination criterion can result in measures of change that have 
properties that better capture change than do scores from conventional tests (Kim-Kang 
& Weiss, 2008).  In this application, a CAT termination criterion can use the SEM bands 
from a Time 2 CAT compared to those from a Time 1 CAT obtained from the same 
examinee to determine if significant change has occurred.  The Time 2 CAT can be 
ended when the two error bands no longer overlap, indicating that significant change 
has occurred, or when a sufficient number of items has been administered and it 
becomes clear that significant change has not occurred (Nydick & Weiss, 2010).   Again, 
because of wide individual differences in test performance among examinees, combined 
with individual variations in magnitudes of change, CAT test length must be allowed to 
vary across examinees.  Finkelman, Weiss, and Kim-Kang (2010) proposed and 
evaluated hypothesis testing methods for evaluating individual change and the 
accuracies of those methods using variable terminating CATs. 
 
 
Putting It All Together: Examples of Fully Adaptive CATs 
 
 Equiprecise CAT.  Figure 7 shows a sample CAT report from a CAT designed to 
measure each examinee to a pre-specified level of precision (minimum SEM of .20).   To 
keep the test to a reasonable length, a maximum of 40 items was specified.  In this 
particular test, the test was terminated when the 40-item maximum was reached. 
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 The report is a graphic plot of the examinee‘s progress through the CAT after each 

item has been administered.  A ―C‖ for an item plotted at the current  estimate 
indicates that the item was answered correctly; an ―I‖ indicates that the item was 

answered incorrectly.  The dashed lines represent a two SEM band around the  

estimate.   The beginning  for this CAT (represented by an ―X‖ at   = −0.24) was based 

on a randomly selected  in the range ±1.0.  Rather than using a Bayesian  estimate 
after the first item was answered, this CAT used an alternate method—the most difficult 
item in the bank was administered to attempt to force a mixed response pattern so that 
maximum likelihood estimation could be used.  Since Item 2 was also answered 
correctly, the next most difficult item was administered, which was answered 
incorrectly. 

 As Figure 7 shows, generally, a correct answer is followed by an increase in the  

estimate and an incorrect answer is followed by a decrease in the  estimate.   The figure 

also shows the convergence in  estimates—the differences between successive  
estimates are large at the beginning of the CAT and tend to become smaller as the CAT 
progresses.   With a few exceptions, the SEM tends to decrease as each item is answered 

and the differences between successive  estimates tend to decrease as more items are 
answered. The figure also shows that the CAT began to converge after about Item 10, 

with changes in  estimates occurring in the first decimal place.  Similar to the Binet 
adaptive test, the CAT selected the most appropriate range of items from the bank for 
this examinees—except for the first eight items, all items administered to this examinee 
were items that would be answered correctly about 50% of the time by examinees whose 

s were between 0.9 and 1.75.  More difficult items and easier items in the bank were 
not administered to this examinee.  
 Figure 8 shows the results of an equiprecise CAT for a different examinee.  The entry 

 estimate for this test was   = 0.0 and the first item was correctly answered.  As a 
consequence, the second item was again the most difficult item in the bank, which was 

answered incorrectly resulting in a maximum likelihood  estimate of 0.11 and an SEM 

= 0.52.  This  estimate was then used to select Item 3.  The CAT response record shows 

a quick convergence of the  estimates for this examinee accompanied by a rapid 
reduction in the SEMs.  Had the test used a termination SEM of 0.20, the CAT could 

have been terminated after 17 items with a  estimate that differed from the 30-item  
estimate in the second decimal place; an SEM termination value of 0.25 would have 

terminated the CAT after 9 items with a  estimate of −0.25, which is very close to the 

30-item   of  −0.21.  Because the final  estimate after the limit of 30 items was very 

close to the  starting value of  = 0.0, a very narrow range of items was administered to 
this examinee from the larger CAT bank—with the exception of the second item, items 

administered were those appropriate for examinees with s between 0.20 and –0.38.  
This response record also illustrates another feature of most CATS:  Excluding the first 
few items in a CAT, the proportion correct for the majority of examinees will converge to 

p = 0.50.  Excluding the first two items (which were not based on estimated ), 15 of 28 
items were correctly answered for a proportion of 0.54. 
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This test will terminate when the standard error of theta is equal to or less than 0.200 

Minimum number of items = 5        Maximum number of items = 40 

Theta was estimated by maximum likelihood. 
 

 Examinee Name : John Q. Public 
  

                        The standard error band plotted as ---- is plus or minus 2.00 standard errors. 

                               X = Initial theta value    C = Correct answer    I = Incorrect answer 
 

 Item  Theta  SE   -3.......-2........-1.........0........+1........+2........+3 

   0  -0.24* 1.00*        --------------------X-------------------- 

   1   4.00* 1.00*                               .         --------------------> 

   2   4.00* 1.00*                               .         --------------------> 

   3   2.52  0.84                                .       -----------------I----- 

   4   2.77  0.68                                .             -------------C--- 

   5   2.38  0.61                                .          ------------I------- 

   6   2.09  0.61                                .       ------------I---------- 

   7   1.49  0.89                             -----------------I---------------- 

   8   0.36  1.00               --------------------I-------------------- 

   9   0.88  0.63                            ------------C------------- 

  10   1.13  0.56                                -----------C----------- 

  11   1.34  0.49                                .  ----------C---------- 

  12   1.44  0.46                                .    ---------C--------- 

  13   1.55  0.43                                .     ---------C--------- 

  14   1.67  0.41                                .       --------C-------- 

  15   1.54  0.38                                .      --------I-------- 

  16   1.60  0.36                                .       --------C------- 

  17   1.70  0.35                                .        -------C------- 

  18   1.76  0.34                                .         -------C------- 

  19   1.65  0.32                                .         ------I------ 

  20   1.52  0.31                                .       -------I------ 

  21   1.40  0.30                                .      -------I------ 

  22   1.27  0.30                                .     ------I------ 

  23   1.30  0.28                                .      ------C----- 

  24   1.32  0.28                                .      ------C----- 

  25   1.36  0.27                                .       -----C------ 

  26   1.40  0.27                                .       -----C------ 

  27   1.31  0.26                                .      ------I----- 

  28   1.34  0.25                                .       -----C----- 

  29   1.37  0.25                                .       -----C----- 

  30   1.40  0.24                                .        ----C----- 

  31   1.43  0.24                                .        -----C----- 

  32   1.46  0.24                                .        -----C----- 

  33   1.50  0.24                                .         ----C----- 

  34   1.53  0.23                                .         -----C---- 

  35   1.55  0.23                                .         -----C----- 

  36   1.59  0.23                                .          ----C----- 

  37   1.62  0.23                                .          -----C---- 

  38   1.58  0.22                                .          ----I----- 

  39   1.53  0.22                                .         -----I---- 

  40   1.55  0.22                                .          ----C---- 

 *Arbitrarily assigned value. 

 The final theta estimate based on 40 items was  1.55 with a standard  error of 0.22, resulting in  a 2.00  

 standard error band of 1.11 to 1.99 

 This test was terminated when the maximum number of items was reached. 
 

 
Figure 7.  A Sample Report on an IRT-Based Adaptive Test 



COMPUTERIZED ADAPTIVE TESTING 

 19 

 
 Item  Theta   SE   -3.......-2........-1.........0........+1........+2........+3 

   0   0.00*  1.00*           --------------------X--------------------           

   1   4.00*  1.00*                               .          --------------------> 

   2   0.11   0.52                      -----------I----------                    

   3   0.20   0.45                        ----------C---------                    

   4  -0.04   0.35                        -------I-------                         

   5   0.05   0.32                          ------C------                         

   6  -0.13   0.29                        ------I------                           

   7  -0.07   0.27                         ------C-----                           

   8  -0.18   0.25                         -----I-----                            

   9  -0.25   0.25                        -----I-----                             

  10  -0.18   0.23                         -----C----                             

  11  -0.27   0.23                        -----I----                              

  12  -0.21   0.22                         ----C-----                             

  13  -0.26   0.22                         ----I----                              

  14  -0.34   0.22                        ----I-----                              

  15  -0.37   0.22                       -----I----                               

  16  -0.33   0.20                        ----C----                               

  17  -0.29   0.19                         ----C---                               

  18  -0.33   0.19                        ----I----                               

  19  -0.38   0.19                        ----I----                               

  20  -0.34   0.18                        ----C----                               

  21  -0.30   0.18                         ----C---                               

  22  -0.27   0.17                         ----C---                               

  23  -0.29   0.17                         ----I---                               

  24  -0.26   0.17                          ---C---                               

  25  -0.28   0.16                         ----I---                               

  26  -0.30   0.16                         ----I---                               

  27  -0.27   0.16                          ---C---                               

  28  -0.25   0.15                          ---C---                               

  29  -0.23   0.15                          ---C---                               

  30  -0.21   0.15                          ---C---                               

 *Arbitrarily assigned value. 

 The final theta estimate based on 30 items was -0.21 with a standard  error of 0.15, resulting in a 2.00  

 standard error band  of -0.51 to 0.08 
 
 
Figure 8.  A Sample Report on an IRT-Based Adaptive Test for a Different Examinee 
 
 Classification CAT.  Figure 9 shows a response record resulting from a CAT 
designed to make a dichotomous classification.  For this purpose, the CAT was 
implemented similarly to those in Figures 7 and 8, except for the termination criterion.  

The test was designed to end when the SEM band surrounding a  estimate fell below a 

prespecified  cutoff value.  The SEM error band in this case was ±1 SEM (resulting in a 

68% two-tailed confidence interval) and the cutoff value was  = +1.0 (as indicated by 
the vertical dashed line in the figure).  A minimum of 10 items was specified to avoid 
premature test termination and a maximum of 50 items was specified to avoid excessive 
testing times. 

 As with the CATs in Figures 7 and 8, the first item (based on a starting  = 0.0) was 
answered correctly and three of the most difficult items in the bank were given until an 
incorrect answer was obtained.  Two incorrect answers then were followed by a string of 
responses essentially alternating between correct responses to less difficult items and 

incorrect responses to slightly more difficult items. As a consequence, the examinee‘s   
 



WEISS 

 20 

This test terminated when the theta estimate plus or minus 1.00 standard errors  

was above or below a theta cutoff of  1.00. 

Minimum number of items =  10       Maximum number of items = 50 

Theta was estimated by maximum likelihood. 

The standard error band plotted as ---- is plus or minus 1.00 standard errors. 

X= Initial theta value    C = Correct answer     I = Incorrect answer 
 

 Item  Theta  SE   -3.......-2........-1.........0........+1........+2........+3 

   0   0.00* 1.00*                     ----------X---------|                     

   1   4.00* 1.00*                               .         |         ----------> 

   2   4.00* 1.00*                               .         |         ----------> 

   3   4.00* 1.00*                               .         |         ----------> 

   4   2.66  1.00*                               .         |     ----------I---- 

   5   1.87  0.94                                .        -|-------I----------   

   6   2.02  0.78                                .         | --------C-------    

   7   1.34  0.56                                .      ---|--I------            

   8   1.43  0.53                                .        -|---C-----            

   9   1.24  0.49                                .      ---|-I-----              

  10   1.33  0.48                                .       --|--C-----             

  11   1.12  0.47                                .     ----|I----                

  12   1.16  0.44                                .      ---|C-----               

  13   1.01  0.44                                .    -----I----                 

  14   1.06  0.43                                .     ----C----                 

  15   0.92  0.43                                .   -----I|---                  

  16   0.97  0.42                                .    ----C|---                  

  17   0.79  0.44                                .  ----I--|--                   

  18   0.84  0.42                                .   ----C-|--                   

  19   0.72  0.43                                . -----I--|-                    

  20   0.75  0.42                                .  ----C--|-                    

  21   0.63  0.44                                .-----I---|                     

  22   0.65  0.42                                . ----C---|                     

  23   0.58  0.43                                .----I----|                     

  24   0.61  0.42                                .-----C---|                     

  25   0.55  0.43                                .----I----|                     

 

 *Arbitrarily assigned value.  These values were not used to terminate the test. 

  The final theta estimate based on 25 items was  0.55 with a standard  error of 0.43, resulting in a 1.00  

  standard error band of  0.13 to  0.98. 

  The error band around the theta estimate did not overlap the cutoff score of  1.00, resulting in a high-

 confidence dichotomous classification. 

 The final theta estimate is below the cutoff score of  1.00 

 
Figure 9.  CAT Response Record for a Dichotomous Classification CAT 
 

estimates slowly decreased from an estimated high of  = 2.66 to a low of 0.55 at Item 

25. At Item 25, the  estimate and the specified SEM band were completely below the 

cutoff value of  = 1.0, and the test was terminated.  Note that the SEM value at 
termination was 0.43, which is fairly high, but it was not necessary to continue the test 
to reduce the SEM, since for classification purposes the test‘s termination criterion was 

met.  The results show that the  estimates were beginning to converge at around Item 
21 and the SEMs began to display convergence (albeit at a high value) at Item 12.  This 
response record also illustrates a phenomenon not evident in the other two response 
records:  The SEMs in Figure 9 increased slightly at Items 17, 19, 21, 23, and 25, 
suggesting that the examinee was not entirely responding in accordance with the IRT 

model used to estimate .  This result partially accounts for the relatively high SEM 
observed after 25 items. 
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Constrained CAT 
 
 The fully adaptive CATs illustrated above are unconstrained.  That is, items are 

selected based only on maximum information at the current  estimate at each stage of 
the CAT.  In some applications of CAT, however, item selection has to be constrained by 
incorporating non-psychometric criteria into the item selection process.  The major 
types of constraints applied include item exposure, content balancing, and ―enemy‖ 
items. 
 Item exposure becomes an issue in CAT when tests are used to make decisions about 
individuals that have important consequences for those individuals.  Thus, when tests 
are used to select individuals for entry into a college or university, for admission into 
special programs that might benefit the individual financially, for hiring into a particular 
job or position, or for licensure or certification, such ―high-stakes‖ consequences 
sometimes motivate examinees to attempt to obtain information on test items so that 
they can enhance their scores.  Because CAT testing programs tend to be continuous—
tests are given to examinees over a long time period—examinees who have taken a CAT 
might remember some test items and make that information available to examinees who 
subsequently take the test.  To minimize this potential problem, item selection based on 
item information can be constrained to (probabilistically) ―expose‖ each item to some 
maximum proportion of examinees (see Georgiadou, Triantafilou, & Economides, 2007, 
for a comprehensive review of item exposure control methods).  As a consequence, more 
items are used from a given item bank, but no items will be seen by all or a large number 
of examinees. 
 Some tests, although developed to meet the unidimensionality assumption required 
for the use of most IRT models to implement CAT, consist of items that vary in content 
characteristics.  For example, a mathematics test used to measure math achievement in 
the early school grades might consist of items measuring addition, subtraction, 
multiplication, and division.  Similarly, a depression scale might include items that 
reflect various aspects of depression (e.g. dysfunction in cognition, overt behavior, or 
mood, and somatic symptoms).  In both cases, different item content might have 
different levels of difficulty, yet the scale is unidimensional.  For certain applied 
purposes, it might be important to ensure that for a given examinee their CAT includes a 
proportionate sampling of items from each of the content domains.  Thus, CATs can be 
constrained to provide (approximate) pre-defined proportions of items from content 
domains that comprise the CAT item bank.  Kingsbury and Zara (1989, 1991) provide a 
review of some methods to achieve content balancing. 
 A third type of constraint frequently implemented in CAT is that of eliminating 
―enemy items.‖  In some testing situations, some items in the bank provide clues that 
might be useful in answering other items; or some items might be very similar to other 
items (e.g., minor rewordings) so that their administration to a given examinee would 
be redundant, as well as violating the assumption of local independence that underlies 
IRT-based CAT—that the responses to test items are independent of each other except 
for their reliance on the trait that underlies the set of items.  To control for enemy items, 
a CAT can include a list of subsets of items that should not be administered together.  If 
an examinee answers any item in the subset, none of the other items in that set are 
administered to that examinee. 
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 Unconstrained CATs will be the most efficient, so item selection constraints are 
generally used only as required in a particular CAT.  Because any constraints imposed in 
a CAT will result in the selection of items that are suboptimal from a psychometric point 
of view (i.e., provide less information and, therefore, result in less rapid convergence of 

 estimates), unless an item bank has many items that are replicates or near replicates of 
each other in terms of item information, constrained CATs will typically require the 
administration of more items to achieve the same degree of measurement precision or 
classification accuracy than unconstrained CATs. 

 
 

Conclusions 
 
 Conventional peaked tests, developed using last century‘s methods of instrument 
construction, can measure well if—and only if—an examinee‘s level on a trait matches 
the region of the trait where the test is peaked.  However, the purpose of measurement 
is to determine where an examinee‘s trait level is located on the trait, and it cannot be 
known in advance.  As demonstrated above, as the examinee‘s trait level deviates from 
the test‘s location, measurement becomes extremely poor with very large errors of 
measurement.  These errors of measurement result in conventional score variabilities 
that are artificially inflated by random error, reducing the utility of the scores for use in 
the most simple—as well as the most complex—statistical analyses.  Error-laden 
standard deviations and variances will reduce the power of t tests or complex analyses of 
variance to detect differences in means and will similarly introduce error into all types 
of correlational analyses. 
 Computerized adaptive testing provides a viable solution to these problems.  Because 
CATs are dynamic, adjusting the test to each examinee as the test is administered, they 
are both efficient and effective.  CATs are effective because they essentially deliver a 
peaked test to each examinee; that is, they quickly adapt to the examinees‘s trait level as 
the test is being delivered to identify the subset of items in a pre-calibrated item bank 
that will best measure each examine.  That subset of items is the subset on which the 
examinee will get about 50% of the items correct.  Because fully adaptive CAT selects 
items by maximum item information at the current trait estimate, they will also be 
efficient—they will use a minimum number of items to measure each examinee to a 
minimum standard error of measurement or to a predetermined degree of precision 
required for a particular application.  As demonstrated above, CATs function well (e.g., 
with equal precision) for examinees at all levels of a trait. 
 Developing a CAT is more complex than developing a conventional test.  They 
require relatively large item banks that are calibrated with IRT, and because they 
require certain decisions to be made that interact with the structure of an item bank, 
require the use of software such as CATSim (Weiss & Guyer, 2010) for proper design 
prior to implementing them. Thompson and Weiss (2011) provide an overview of the 
steps necessary to develop a CAT.  But in spite of the increased complexity, the better 
measurements provided by CAT, and the resulting more accurate and precise data, are 
very likely to result in more meaningful research conclusions (as well as better decisions 
made based on individual measurement data) than are error-laden measurements from 
―off-target‖ peaked conventional tests. 
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