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Measuring individuals or groups longitudinally is frequently necessary in social science 
research and applications.  Substantial research and discussion has focused on the 
statistical properties of measures of change and some of the psychometric problems 
involved This monte-carlo simulation study focused on properties of the measurement 
instruments used for obtaining scores that represent change or growth over five time 
points and examined how well scores from conventional tests and computerized adaptive 
tests used to measure individual growth curves reflect true change.  Data representing 
four different patterns of individual change and a baseline no-change condition were 
generated from an item response theory (IRT) model.  Different tests simulated were 
conventional peaked tests with narrow and wider difficulties and three levels of 
discrimination, and computerized adaptive tests (CATs) drawn from banks with the same 
levels of discrimination. Conventional tests were scored by number correct and IRT 
weighted maximum likelihood.  Results showed that as the examinees’ scores moved from 
the difficulty levels at which the tests were concentrated, number-correct scores over-
estimated true change and had increasing amounts of error.  High discrimination 
conventional tests had the poorest recovery of change for both groups and individuals. 
IRT scoring of the conventional tests improved recovery of change somewhat.  By 
contrast, CATs consistently estimated growth with minimum and consistent error and 
performed best with highly discriminating items. 
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Frequently in social science research and applications, people are 
measured on more than a single occasion. In many cases, interest is in 
changes over time that occur at the group level.  For example, a researcher 
might be interested in changes over time in attitudes or perceptions of 
different groups of people, such as those affiliated with different political 
parties.  In other instances, a social science researcher might perform an 
experiment that measures a group on one occasion, applies some 
experimental procedure and/or treatment, and then measures the same 
group of individuals on another occasion.  In medical research, following 
measurements on the depression of a group of patients, a treatment is 
prescribed and the measurement of depression is repeated at a later date 
or a series of later dates.  In educational research, different teaching 
approaches might be used in different schools and classrooms and group 
gains from a baseline measurement are examined.  Developmental 
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researchers frequently are concerned with patterns of group growth over 
time for different cognitive abilities. 

Repeated measurements also frequently are obtained and examined for 
single individuals to evaluate patterns of growth or decline.  In schools, it 
can be important to track how well a student is doing with regard to 
learning a defined body of knowledge across a period of weeks or a 
semester, with measurements taken at frequent intervals.  Medical 
researchers might be interested in patterns of decline in cognitive 
functioning of the elderly across time for specific cognitive tasks. Similarly, 
those working with children with special needs might need to monitor 
their intellectual growth by measuring then monthly for a period of a year 
or more to determine if improvement is occurring. 

Research on measuring change—including growth, decline, and lack of 
change—has primarily been focused on change over two occasions.  
Although Cronbach and Furby (1970) proposed a moratorium on 
attempting to measure change based on some psychometric issues that 
they identified that suggested that measures of change over two occasions 
were psychometrically flawed, because of the applied and research need to 
examine both group and individual change, attempts to resolve the 
psychometric issues have continued (e.g., Bereiter, 1963; Collins, 1996; 
Hummel-Rossi & Weinberg, 1975; Lord, 1963; Mellenbergh, 1999; Overall 
& Woodward, 1975; Rogosa & Willett, 1983; Willett, 1997; Williams & 
Zimmerman, 1996a, 1996b; Zimmerman & Williams, 1982), focusing 
almost entirely on change observed at two occasions. Change across two 
occasions has also been examined in the context of item response theory 
and computerized adaptive testing by May and Nicewander (1998) and 
Kim-Kang and Weiss (2008). 

A common approach to measuring growth, whether at two occasions or 
across multiple occasions, has been the repeated use of the same 
measuring instrument.  This frequently occurs in “pre-post” studies and 
applications, but also when individuals are measured across multiple 
occasions.  The same instrument is used in many instances because 
alternate or “parallel” forms of many psychological measuring instruments 
are not available due to the expense involved in constructing parallel 
forms and the difficulty of creating two or more forms of a test that 
function equivalently.  Also, in many cases, the measuring instruments 
used have been constructed according to classical test development 
procedures, which are designed to maximize internal consistency 
reliability by selecting items for the instrument that (1) have high 
discriminations and (2) have item difficulties (proportion correct) around 
.50, or for non-dichotomous items mean total scores that are at the center 
of the response scale range. 

However, when the same or “parallel” forms of a given measurement 
instrument are used to measure growth (or decline) for either groups or 
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individuals, the researcher runs the risk of  the measuring instrument 
becoming off-target (Embretson, 1996;  Kang & Waller, 2005) for the 
examinees when growth or decline has occurred.  Weiss (2011) briefly 
described the potentially detrimental effects of off-target measuring 
instruments on scores from conventional tests, and conclusions drawn 
from them, and proposed computerized adaptive testing (CAT) as a viable 
solution.  This study further examined this problem in the context of 
measuring both group and individual change across multiple occasions. 
 
Purpose 
 

The purpose of this study was to examine how well scores from 
conventional tests and CATs (Weiss, 2011) used to measure individual 
growth curves reflect true change. A conventional test is composed of a 
fixed set of items and, typically if it is a “peaked” test, it is targeted at a 
specific range of the ability or trait being measured, which might or might 
not correspond to a given examinee’s true trait level when change has 
occurred. The current simulation study was an examination of the 
similarity between true growth curves and observed growth curves across 
five measurement occasions, for both groups and individuals. Factors that 
might impact how well a test reflects true change include where and how 
much the test is peaked, the item discriminations, the way the test is 
scored, and how the test is administered (conventionally or adaptively). 
 
 

Method 
 

True θ Values 

Using monte-carlo simulation, the Time 1 true ability/trait (θ) values 
(θ1) for 200 simulated examinees (simulees) were drawn from a uniform 
distribution ranging from −.25 to .25. Five different true growth curves 
were simulated using the same 200 simulees in each condition. Growth 
Curve A was used as a baseline in which the simulees’ true θ levels did not 
change over the five time points. The other four growth curves were 
generated by adding a constant to the θ1 values for each of the simulees at 
each of the four additional time points. Table 1 shows how the growth 
curves were simulated and Figure 1 illustrates the mean growth curves.  
Growth Curve B reflected slow but accelerating growth, Curve C was linear 
growth, and Curves D and E reflected decelerating growth, with higher 
initial growth for Curve E. 
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Table 1 
The Five Growth Curves 

Curve Time 1 Time 2 Time 3 Time 4 Time 5 
A θ1 θ1 θ1 θ1 θ1 
B θ1 θ1 + .2 θ1 + .5 θ1 + 1 θ1 + 1.7 
C θ1 θ1 +.6 θ1 + 1.2 θ1 + 1.8 θ1 + 2.4 
D θ1 θ1 + 1.2 θ1 + 1.9 θ1 + 2.3 θ1 + 2.5 
E θ1 θ1 + 2 θ1 + 2.3 θ1 + 2.4 θ1 + 2.5 

 

 
Figure 1. Mean True Growth Curves 

 

Conventional Tests 

Scored item responses to 50-item conventional tests were generated 
using the 3-parameter logistic IRT model  
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where Pij is the probability of a correct response to item i by examinee j, θj 
is the trait level of examinee j, ai is the discrimination of item i, bi is the 
difficulty of item i, ci is the pseudo-guessing parameter of item i, and D = 
1.7. Three item discrimination conditions were generated. Each condition 
had a normal distribution with a mean ai = .6, 1.0, or 1.5, representing low 
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(LD), medium (MD), and high (HD) discriminations, respectively. All of 
the item discrimination conditions had a standard deviation of .1. There 
were two item difficulty conditions, as well. Items for conventional tests 
are commonly selected to have difficulties close to bi = 0.0 in order to 
maximize the item variance, which increases the internal consistency 
reliability of the test (Crocker & Algina, 2006). Thus, the item difficulties 
for the conventional tests were simulated to be closely centered around bi 
=0.0. In the Narrow b condition, bis were generated from a uniform 
distribution ranging from bi = −.5 to .5. In the Wide b condition, bis were 
generated from a uniform distribution ranging from bi = −1 to 1. The ci 
parameter was set to .2 for all items. Randomly parallel 50-item tests were 
generated at each time point. 

Item responses were simulated using the true θ values for examinees at 
each time point using a program written in R (R Development Core Team, 
2010). A matrix containing the expected probabilities of correct responses 
was calculated using Equation 1. A matrix of random numbers was also 
generated from a uniform distribution ranging from 0 to 1. If the random 
number generated for a simulee on a given item was less than the expected 
probability of a correct response for that item, the item was scored as 
correct (1). If the random number was greater than or equal to the 
expected probability, the item was scored as incorrect (0). 

The number-correct scores were then calculated for each time point. 
Using the test response function associated with each set of item 
parameters for each set of 50 items, with θ values incremented by .05, 

number-correct scores were transformed to the θ metric (N-C  ). This 
allowed the observed θ approximations and the true θ values to be 
compared on the same scale. IRT weighted maximum likelihood (WML; 
Guyer, 2010, p.37; Warm, 1989) θ estimation was also used to estimate θ 
levels to investigate whether scoring the same data by IRT improved the 
recovery of the true growth curves. WML was used rather than maximum 

likelihood because it can provide   estimates for all correct or all incorrect 
response patterns. 
 
Computerized Adaptive Tests 
 

Scored item responses to item banks used to administer 50-item fixed-
length CATs were generated using Equation 1. The discrimination 
conditions (low, medium, and high) for the CATs were the same as those 
used in the conventional tests, and ci = .20 for all items, as well. The range 
of item difficulties for each CAT item bank was between bi = −3.50 and 
3.50. The difficulty range was broken into 14 segments, each of which had 
a width of .50. Each segment contained 25 items, which totaled to 350 
items in each item bank. Within each segment, the bis were generated 
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from a uniform distribution.  There were three CAT item banks used—one 
for each discrimination condition. 

Responses to all of the items in the CAT item banks were simulated 
using R (R Development Core Team, 2010) using the same method 
described above. CATSim (Weiss & Guyer, 2012) was then used to 
simulate the administration of a CAT for each time point. Initial θ 
estimates at Time 1 were set to 0.0 for all simulees. For time points 2 – 5, 
the initial θ estimate for each simulee was the final θ estimate from the 
previous time point, as proposed by Weiss and Kingsbury (1984). The θ 
estimates were obtained using maximum likelihood with a step size of 3 
for non-mixed response patterns. Items were selected using maximum 
information, selecting at each stage in the CAT the unadministered item in 

the 350-item bank that provided maximum information at the current  
estimate. All of the CATs were terminated after 50 items were 
administered.  
 
Analysis 
 

In order to evaluate how close an observed point on the mean growth 
curve was to the corresponding true growth curve, RMSE was calculated. 
RMSE averaged across simulees for occasion k is given by 
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where N = 200, ˆ
kj

 is the estimated θ value of simulee j at time k, and θkj is 

the true θ of simulee j at time k.  
Bias was calculated to evaluate whether change was being 

overestimated or underestimated at each time point. Bias is given by 
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Positive bias indicates that true change was being overestimated and 
negative bias indicates that true change was being underestimated. 

In addition to calculating the RMSE at each time point to see how it 
changed as θ moved farther from the targeted ability level, RMSE was 
examined for each simulee’s growth curve to see how well individual 
growth was recovered. The RMSE averaged across time points for simulee 
j given by 
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Results 
 
Group Growth 
 
Means and SDs 

Table 2 shows the means and standard deviations (SD) of true  at each 

of the five time points, as well as N-C  , WML  , and CAT   for the six 
combinations of a and b for the baseline Curve A (no-change) condition.  
Under all item bank conditions, CAT had a tendency to slightly 

overestimate true  and conventional tests had a tendency to slightly 

underestimate true , whether scored by N-C or WML.  The SDs for all   

estimation methods were higher than the SDs of true s, reflecting error of 
measurement. SDs were highest for the Low a condition and decreased as 
a increased, for both the Narrow and Wide b conditions.  For the Narrow b 

conditions, CAT   estimates generally had lower SDs than the 
conventional tests, whether scored by N-C or WML.  For the Wide b 

conditions, CAT   estimates had smaller SDs for all but two conditions. 
Figure 2 shows the same data as in Table 2, but for Curve B, a slowly 

accelerating growth curve (numerical values for all figures are in Von 
Minden, 2011). For both the Narrow b (Figures 2a – 2c) and Wide b 

(Figures 2d – 2f) conditions, mean estimated  s were close to mean true 

s for Times 1 – 4.  At Time 5, however, when items had high as, the true 

mean  was 1.677 but the NC mean   was 2.200 for the Narrow b 
condition and 1.883 for the Wide b condition. 

Figure 2 also displays differential effects on the SDs of the   estimates 
at different time points, as indicated by the vertical lines plotted at the 

means for each condition.  True   SDs were .142 for all time points.  For 

the Narrow b condition (Figures 2a – 2c), SDs of CATs s were essentially 
constant across time points for a given level of a: for Narrow b, they 
ranged from .326 to .374 for Low a, .254 to .285 for Medium a, and .195 to 

.227 for High a.  By contrast, SDs of N-C s increased as the mean true   
increased, ranging from .372 to .519 for Low a (Figure 2a), .293 to .484 for 
Medium a (Figure 2b), and .229 to .834 for High a (Figure 2c), the latter 

result indicating substantial amounts of error in these  estimates.  WML 
SDs increased with increasing means for the Low and Medium a 
conditions, but remained relatively constant for the High a condition. 

A similar pattern of results for the SDs was observed for the Wide b 

conditions, but the differences were less pronounced.  CAT   SDs were 
low and essentially constant across time points within an item 

discrimination level, whereas the SDs of the N-C s increased as the means 
increased; the maximum NC SDs were all at Time 5 with values of .502, 
.467, and .563 for Low, Middle, and High a, respectively, versus .142 for 

true s. 
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Table 2  

Means and SDs of   Estimates for Each Condition at Each Time Point, for Curve A 

Condition 

Time 1 Time 2 Time 3 Time 4 Time 5 

Mean      SD Mean   SD Mean    SD Mean   SD Mean    SD 

True θ  −.023  .142  −.023  .142  −.023  .142  −.023  .142  −.023  .142 

Narrow b, Low a           

 

N-C θ  −.028  .372  −.026  .373  −.013  .405  .022  .391  −.019  .400 

WML θ  −.029  .362  −.034  .346  −.020  .390  .015  .380  −.014  .383 

CAT θ  .030  .374  .019  .353  .042  .377  .033  .375  .007  .329 

Narrow b, Medium a          

 

N-C θ  −.003  .293  −.007  .281  −.017  .263  −.013  .263  −.020  .286 

WML θ  −.005  .276  −.008  .272  −.015  .251  −.006  .248  −.020  .274 

CAT θ  .033  .260  −.011  .266  −.010  .271  .020  .263  .010  .278 

Narrow b, High a           

 

N-C θ  −.012  .229  .015  .203  −.009  .208  −.016  .214  −.013  .201 

WML θ  −.008  .214  .007  .186  −.005  .204  −.017  .213  −.016  .194 

CAT θ  .014  .227  −.013  .208  .011  .210  −.004  .230  −.016  .222 

Wide b, Low a           

 

N-C θ  −.035  .393  −.026  .391  .015  .414  −.008  .392  −.015  .385 

WML θ  −.037  .372  −.004  .376  .011  .402  −.016  .376  −.023  .375 

CAT θ  .030  .374  .019  .353  .042  .377  .033  .375  .007  .329 

Wide b, Medium a          

 

N-C θ  −.056  .271  −.008  .303  −.038  .282  −.048  .274  −.003  .253 

WML θ  −.062  .258  −.011  .289  −.029  .268  −.031  .257  −.003  .253 

CAT θ  .033  .260  −.011  .266  −.010  .271  .020  .263  .010  .278 

Wide b, High a           

 

N-C θ  −.007  .229  −.044  .215  −.026  .235  −.017  .219  −.047  .255 

WML θ  −.008  .219  −.041  .208  −.026  .227  −.014  .214  −.045  .238 

CAT θ  .014  .227  −.013  .208  .011  .210  −.004  .230  −.016  .222 
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Figure 2.  Means and SDs (Vertical Lines) of  Estimates at Five Time Points for Growth Curve B 
 

 
 

a. Narrow b, Low a                b. Narrow b, Medium a                c. Narrow b, High a 

 

 d. Wide b, Low a                    e. Wide b, Medium a               f. Wide b, High a 
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Figure 3 shows means and SDs of estimated  for Curve C, which modeled linear 

growth.  Similar results were obtained as were observed for Curve B—as the mean true   

deviated further from  0.0, where the conventional test was peaked, mean   estimates 

for the conventional test (both N-C and WML) deviated further from mean true .  

However, mean NC   estimates tended to be higher than mean true  , whereas mean 
WML estimates (based on the same item responses from which N-C scores were 
computed), tended to be lower than the true means (e.g. Figures 3c and 3f), with a 

somewhat diminished effect for the Wide b tests. Mean s for CATs were all very close to 
the true means for all time points and all combinations of a and b conditions. 

As for Curve B, SDs of N-C s increased over time points for all a and b conditions.  
Maximum N-C SDs with Narrow b were .525 at Time 4 for Low a, .494 for Medium a, 
and .760 for High a (Time 5 SDs were lower due to ceiling effects).   Wide b tests had 
little effect on the SDs—corresponding SDs were .530, .460, and .777, respectively.  By 

contrast, CAT   SDs were constant across time points within an a level, for both Narrow 
and Wide b tests. 

The means and SDs of the true and estimated θ values for Curve D, a decelerating 
growth curve, are shown in Figure 4. The simulees’ true θ values were within the 
targeted range of the conventional test only at Time 1. After that time point, using the 
Narrow b test (Figures 4a – 4c) the N-C θ approximations (M = 1.311, 2.454, 2.759, and 
2.874) increasingly overestimated the true means (M = 1.177, 1.877, 2.277, and 2.477) 
and had the largest standard deviations (SD = .603, .740, .520, and .390) in the High a 
condition. The WML θ estimates (M = 1.124, 1.665, 1.796, and 1.749) underestimated 
the true means and had the smallest standard deviations (SD = .291, .261, .170, and 
.120) in the High a condition. As before, the mean CAT θ estimates (M = 1.207, 1.910, 
2.306, and 2.503) were very close to the true means, and the standard deviations (SD = 
.224, .210, .212, and .217) were smallest in the High a condition. 

A similar pattern of results was observed for the Wide b conditions (Figures 4d – 4f), 

although deviations from true values were somewhat attenuated.  N-C  s were higher 

than true s, particularly in the High a condition, where the magnitude of 
overestimation tended to increase with increasing distance of the true means from the 

location of the test.  SDs of N-C s increased at successive time points for all a 
conditions, reaching their maximum of .717 at Time 3 for the High a condition, before 

reducing due to ceiling effects.  Again, WML mean s were close to the true means for 

the first three time points, then underestimated true s. SDs of WML s were small and 

constant across time points, and decreased with increasing  a. CAT mean s were again 

very similar to true s and, similar to WML SDs, CAT SDs remained constant across 

time points, were generally the smallest of the   estimation  methods, and decreased 
with increasing a. 

The means and SDs for the true and estimated θ values for Curve E are shown in 
Figure 5. As with Curve D, the simulees’ true θs fell within the targeted range of the 

conventional test only at Time 1. After that, the N-C s again overestimated the true 

mean  s  and  the  WML θs underestimated the true means,  with  the most pronounced  
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Figure 3.  Means and SDs (Vertical Lines) of  Estimates at Five Time Points for Growth Curve C 

 

       a. Narrow b, Low a       b. Narrow b, Medium a     c. Narrow b, High a 

 

 

 

 

 

 

             d. Wide b, Low a       e. Wide b, Medium a    f. Wide b, High a  
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Figure 4.  Means and SDs (Vertical Lines) of  Estimates at Five Time Points for Growth Curve D 

 

a. Narrow b, Low a                b. Narrow b, Medium a               c. Narrow b, High a 

   

 

 

 

 

 

             d. Wide b, Low a        e. Wide b, Medium a       f. Wide b, High a  
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Figure 5.  Means and SDs (Vertical Lines) of  Estimates at Five Time Points for Growth Curve E 
 

 

 a. Narrow b, Low a               b. Narrow b, Medium a     c. Narrow b, High a 

   

 

 

 

 

 

             d. Wide b, Low a                 e. Wide b, Medium a       f. Wide b, High a  
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differences in the High a conditions.  For Time 2 – 5 for the Narrow b condition 
(Figures 5a – 5c), true means were 1.977, 2.277, 2.377, and 2.477; by contrast, N-
C means were 2.637, 2.721, 2.784, and 2.821; and WML means were 1.677, 1.761, 
1.804, and 1.733.  As with other growth curves, the mean CAT θ estimates for 
Times 2 – 5 (M = 1.983, 2.279, 2.392, and 2.504) were close to the true means. 

The SDs followed the same pattern as the previous growth curves, as well; in 
the High a condition they were largest for the N-C θ approximations and smallest 

for the WML and CAT θ estimates.  NC   SDs were as high as .668 for the 

Narrow b tests and .700 for the Wide b tests, compared to .142 for true , 

approximately .230 for CAT , and about .250 for WML   with High a items. 

 
Bias 

 
The average bias at each time point for all of the growth curves and  

estimation methods is shown in Figure 6. As was seen with the mean θ estimates, 

N-C θ estimates tended to be positively biased when the mean true   differed 
from the test difficulty, the WML θ estimates tended to be negatively biased, and 
the CAT θ estimates were essentially unbiased. The magnitude of the bias was not 
always larger for one type of θ estimation under the Narrow b condition (Figures 
6a – 6e). At some time points, the N-C θ approximations had noticeably larger 
values of bias, such as Time 5 in Curve B (Figure 6b) or Time 4 (Figure 6c) in 
Curve C. However, there were time points where the WML θ estimates had 
noticeably larger values of bias, such as Time 5 in Curves C, D, and E (Figures 6c 
– 6e) for the Narrow b conditions. As the difference between the targeted θ range 
of the conventional tests and the true θ values of the simulees became larger, the 
average bias for the WML θ estimates became larger in magnitude than the N-C 
θs, although in the opposite direction. For N-C θ and WML, the bias was largest 
in magnitude in the High a (HD) condition and at time points at which the 
simulees had moved farther away from the conventional tests. 

For the Wide b condition, a similar picture emerged (Figures 6f through 6j).  

Although CAT s remained unbiased, as they had for the Narrow b conditions, 

bias for the WML s was reduced so that WML had slightly larger bias than N-C 

s for High a (HD) conditions only at Time 4 for Curve D (Figure 6i) and Times 4 
and 5 for Curve E (Figure 6j). 
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Figure 6.  Average Bias for Each Growth Curve for Narrow b and Wide b Conditions 

 

     
 

                     a. Curve A, Narrow b        f. Curve A, Wide b 

   

                      b. Curve B, Narrow b        g. Curve B, Wide b 

   

                      c. Curve C, Narrow b        h. Curve C, Wide b 

   

                           d. Curve D, Narrow b         i. Curve D, Wide b 

    

                        e. Curve E, Narrow b        j. Curve E, Wide b 
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RMSE 

RMSE, the SD of the difference between estimated   and true  across a group of 

simulees, is a direct indicator of the error of measurement for a given   estimation 
method and condition  The average RMSEs at each time point for all of the growth 
curves are shown in Figure 7. For the time points at which the simulees’ true θs were 
within the targeted range of the conventional tests, the High a condition had the lowest 
average RMSE and the Low a condition had the highest average RMSE. Once the 
simulees moved far outside the targeted range of the conventional tests, however, the 
High a condition had the highest average RMSE (for N-C θ and WML θ). Generally, N-C 
θ  had higher average RMSEs than WML θ; the CAT θ estimates had the lowest average 
RMSE values across all discrimination conditions, with RMSE decreasing with 
increasing a and essentially constant across time points regardless of the distance 

between true  and the location of the test. 

The magnitudes of RMSE were quite large under several conditions for the N-C s.  

For Curve B with Narrow b at Time 5, RMSE approached a full   SD unit (Figure 7b).  

RMSEs of N-C s approached or exceeded .75 SD units for at least one time point for 
Curves C, D, and E for both the Narrow b condition (Figures 7c – 7e) and the Wide b 
condition (Figures 7h -7j).  RMSEs were near .75 for WML only for Curves D and E at 
Time 5 for Narrow b conditions. 

 
Recovery of Individual Growth Curves 

The RMSE for individual examinees reflects the SD of the differences between the 
estimated growth curve for a simulee and the simulee’s true growth curve.  A smaller 
RMSE indicates better recovery of the true growth curve.  The distributions of RMSE for 

individual simulees across all five time points, conditions, and   estimation methods 
are shown in Figure 8.  

Regardless of growth curve, CAT θ had RMSE values that were the same or smaller 
than those for the N-C θ or WML θ. CAT θs had the smallest RMSE values in the High a 
condition, followed by the Medium then Low a conditions. For Curve E in the Narrow b 

condition (Figure 8e), CAT s had a mean RMSE of .143 with SD = .046 and a range of 

.048 to .260; for the same conditions, NC   RMSEs had M = .642, SD = .114, and 
ranged from .444 to .888.  For the same condition with a Wide b test, there was also no 

overlap between the CAT and N-C   RMSE distributions. 
The distributions of RMSE values for the N-C θs and WML θs changed depending on 

the growth curve. For Curve A (no growth), the High a condition with Narrow b (Figure 
8a) clearly measured individuals with the most precision because it had the lowest 

individual RMSEs for all  estimation methods; that trend was not obvious when the 
tests had Wide b (Figure 8f).  
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Figure 7.  Average RMSE for Each Growth Curve for Narrow b and Wide b Conditions 
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Figure 8.  Distribution of Individual RMSEs for Each Growth Curve for Narrow b and Wide b 
Conditions 
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For Curves B through E with Narrow b, the RMSEs  in the Low and Medium a 
conditions did not change dramatically, but the RMSEs for the N-C θs in the High 
a condition became considerably larger.  Again, this trend was somewhat less 
obvious for the Wide b condition. Across all of the growth curves, the WML θ 
estimates had lower individual RMSEs than the respective N-C θ approximations, 
even though they were based on the same sets of item responses. 

 
Discussion and Conclusions 

 
Overall, tests consisting of highly discriminating items performed better 

(lower bias and RMSE in the recovery of true growth) than tests containing items 
with lower discriminations when the test’s difficulty corresponded to the 
examinees’ θ levels. An item with high discrimination has an information 
function that is peaked; the item provides substantial information at the 
particular θ level that corresponds to the item difficulty, but that high level of 
information is concentrated over a narrow range of θ. An item with low 
discrimination has an information function that is less peaked; it provides less 
information at the particular θ level that corresponds to the item difficulty, but 
that information is spread out over a wider range of θ. When items are 
aggregated into tests, tests comprised of highly discriminating items that are 
similar in difficulty, have highly peaked information functions, whereas tests with 
less discriminating items have test information functions that are lower and less 
peaked. 

When the examinees’ θ levels were outside the targeted range of the test (i.e., 
change had occurred), the high discrimination condition performed the worst 
when using conventional tests. This can be explained by the low level of 
information that is available at θ levels that do not correspond very closely to the 
item difficulties when using items with high discriminations. Items with lower 
discriminations do not provide high levels of information at a particular level of 
θ, but they do offer more information at extreme θ levels than highly 
discriminating items. When using CATs instead of conventional tests, highly 
discriminating items performed the best regardless of examinee θ levels. 

Widening the targeted θ range of the conventional tests improved the 
measurement of individual change somewhat, but once examinees moved outside 
the targeted θ range, the same pattern of results emerged, although the 
magnitudes were smaller than those in the narrow difficulty condition. The 
higher individual RMSE values for Curve A (the no-change condition) in the wide 
difficulty condition can be explained by the fact that the tests with wider difficulty 
ranges had items that were more spread out over the θ range than tests in the 
narrow difficulty condition. The narrow tests had more items concentrated 
around the specific range of θ in which the examinees were located at all five time 
points, which resulted in more information available for those examinees. The 
tests with a wider difficulty range resulted in less information for the examinees 
in growth curve A, but more information for examinees in the other growth 
curves in which change occurred. Thus, compared to the narrowly peaked 
conventional tests, the wider conventional tests did a somewhat better job of 
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measuring individuals who changed over the five time points, but did not do as 
well for the individuals who did not change. 
 
Conclusions 

This study demonstrated that conventionally constructed and scored 
peaked tests cannot adequately measure individual growth at multiple time 
points—number-correct scores from peaked conventional tests over-estimated  
true trait levels, with greater overestimation occurring as the examinee’s trait 
levels moved further from the range of the test.  IRT scoring of the conventional 
tests improved the recovery of true growth curves, but there was still a wide range 
of error in recovery of patterns of individual growth. By contrast, CATs recovered 
change very well, regardless of the pattern or level of change.  These results 
support and extend the conclusions drawn by May and Nicewander (1998) and 
Kim-Kang and Weiss (2008), who independently concluded that change scores 
across two occasions from conventional tests poorly measure actual individual 
change. Both studies also showed that IRT scoring of conventional tests resulted 
in better recovery of true change, but also that change scores from adaptive tests 
recovered true change considerably better than either number-correct or IRT-
scored conventional tests. 

Researchers using the same test or parallel conventional tests to measure 
individual change over multiple time points have no way of knowing whether the 
observed growth curves reflect true change or measurement error, as 
demonstrated by the results of recovering individual patterns of growth.  Without 
knowing how much an examinee has changed from one time point to another, it 
is impossible to know where to target the difficulty of the tests in order to 
improve the measurement of individual change. Tests designed according to the 
rules of classical test theory—highly discriminating items that are peaked or 
concentrated in difficulty—measure change more inaccurately than tests that 
deviate from these objectives.  In other words, highly “reliable” conventional tests 
are poor tests for measuring individual growth or decline. 

CAT provides a solution to the problem of not knowing how much each 
examinee changed over multiple testing occasions—and consequently, where to 
target the test’s difficulty. Due to the individualized and dynamic item selection 
process for each examinee, using CAT to measure individual change allows for 
precise measurement of both examinees who do not change from one time point 
to another, as well as examinees who change dramatically.  This study used fixed-
length CATs; however, similar results could be expected using variable-length 
CATs (e.g., Finkelman, Weiss, & Kim-Kang, 2010), with consequent savings in 
numbers of items administered at each time point. 

The growth curves used in this study might have been more realistic if there 
had been more individual variability in the pattern of growth. Regardless of that 
fact, the results of this study would generalize to any pattern of growth (or 
decline) in which an examinee’s ability or trait level is outside the concentration 
of difficulty of a particular set of items.  The results also generalize to tests that do 
not have sufficient numbers of items near an examinee’s trait level as it changes 
on repeated measurements.  Only adaptive tests operating from an item bank of 
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wide-ranging item difficulties can accurately measure individual patterns of 
growth or decline over repeated measurements—conventionally constructed tests 
cannot accurately measure change. 
 
 
Corresponding author: David J. Weiss, Department of Psychology, University 
of Minnesota, N660 Elliott Hall, Minneapolis MN 55455-0344, 
email: djweiss@umn.edu 

 

References 

Bereiter, C. (1963). Some persisting dilemmas in the measurement of change. In C. 
Harris (Ed.), Problems in measuring change (pp. 3-20). Madison, WI: University of 
Wisconsin Press. 

Collins, L. M. (1996). Is reliability obsolete? A commentary on “Are simple gain scores 
obsolete?” Applied Psychological Measurement, 20, 289-292. 

Crocker, L., & Algina, J. (2006). Introduction to classical & modern test theory. Mason, 
OH: Thomson Wadsworth. 

Cronbach, L. J., & Furby, L. (1970). How we should measure “change” – or should we? 
Psychological Bulletin, 74, 68-8 . 

Embretson, S. E. (1996). Item response theory models and spurious interaction effects in 
factorial ANOVA designs. Applied Psychological Measurement, 20, 201-212. 

Finkelman, M., Weiss, D. J., & Kim-Kang, G. (2010). Item selection and hypothesis 
testing for the adaptive measurement of change. Applied Psychological 
Measurement, 34, 238-254. 

Guyer, R. D. (2010). Manual for ScoreAll 4.0: IRT Scoring for Conventionally 
Administered Tests. St. Paul MN: Assessment Systems Corporation. 

Hummel-Rossi, B., & Weinberg, S. L. (1975). Practical guidelines in applying current 
theories to the measurement of change. I. Problems in measuring change and 
recommended procedures. JSAS Catalog of Selected Documents in Psychology, 5, 
226 (Ms. No. 916). 

Kang, S.-M. & Waller, N. G. (2005). Moderated multiple regression, spurious interaction 
effects, and IRT. Applied Psychological Measurement, 29, 87-105. 

Kim-Kang, G., & Weiss, D. J. (2008). Adaptive measurement of individual change. 
Zeitschrift fur Psychologie/Journal of Psychology, 216, 49-58. 

Lord, F. M. (1963). Elementary models for measuring change. In C. Harris (Ed.), 
Problems in measuring change (pp. 21-38). Madison, WI: University of Wisconsin 
Press. 

May, K. & Nicewander, W. A. (1998).  Measuring change conventionally and adaptively.  
Educational and Psychological Measurement, 1998, 58, 882. 

Mellenbergh, G. J. (1999). A note on simple gain score precision. Applied Psychological 
Measurement, 23, 87-89. 

Overall, J. E., & Woodward, J. A. (1975). Unreliability of difference scores: A paradox for 
measurement of change. Psychological Bulletin, 82, 85-86. 

R Development Core Team. (2010). R: A language and environment for statistical 
computing. Vienna, Austria: R Foundation for Statistical Computing. 

Rogosa, D. B., & Willett, J. B. (1983). Demonstrating the reliability of the difference 
score in the measurement of change. Journal of Educational Measurement, 20, 335-
343. 



MEASURING INDIVIDUAL GROWTH 

101 
 

Von Minden, S. (2011).  Measuring individual change: A comparison of conventional 
and adaptive tests.  Unpublished Master’s thesis, Department of Psychology, 
University of Minnesota 

Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. 
Psychometrika, 54, 427-45 . 

Weiss, D. J. (2011). Better data from better measurements using computerized adaptive 
testing. Journal of Methods and Measurement in the Social Sciences, 2(1), 1-23. 

Weiss, D. J. & Guyer, R. (2012). Manual for CATSim: Comprehensive simulation of 
computerized adaptive testing. St. Paul MN: Assessment Systems Corporation. 

Weiss, D. J., & Kingsbury, G. G. (1984). Application of computerized adaptive testing to 
educational problems. Journal of Educational Measurement, 21, 361-375. 

Willett, J. B. (1997). Measuring change: What individual growth modeling buys you. In 
E. Arnsel & K. A. Reninger (Eds.), Change and development (pp. 213-243). Maywah, 
NJ: Erlbaum. 

Williams, R. H., & Zimmerman, D. W. (1996a). Are simple gain scores obsolete? Applied 
Psychological Measurement, 20, 59-69. 

Williams, R. H., & Zimmerman, D. W. (1996b). Commentary on the commentaries of 
Collins and Humphreys. Applied Psychological Measurement, 20, 295-297. 

Zimmerman, D. W., & Williams, R. H. (1982). Gain scores in research can be highly 
reliable. Journal of Educational Measurement, 19, 149-154. 


