El poder de la prueba lineal sobre la marcha
La Prueba Lineal Sobre la Marcha (PLSM) es un método de evaluación que aumenta la seguridad de la prueba al limitar la exposición de los ítems. Intenta equilibrar las ventajas de las pruebas lineales (por ejemplo, todos ven la misma cantidad de ítems, lo que resulta más justo) con las ventajas de los exámenes algorítmicos (por ejemplo, crear una prueba única para todos).
En general, hay dos familias de entrega de pruebas. Los enfoques estáticos entregan el mismo formulario o formularios de prueba a todos; este es el método de prueba “lineal” tradicional y omnipresente. Los enfoques algorítmicos entregan la prueba a cada examinado basándose en un algoritmo informático; esto incluye PLSM, pruebas adaptativas computarizadas (PAC) y pruebas multietapa (PME).
¿Qué es la prueba lineal sobre la marcha?
El objetivo de la prueba lineal sobre la marcha es proporcionar a cada examinado una prueba lineal creada exclusivamente para él, pero cada una de ellas se crea para que sea psicométricamente equivalente a todas las demás para garantizar la imparcialidad. Por ejemplo, podríamos tener un grupo de 200 ítems y cada persona solo recibe 100, pero esos 100 están equilibrados para cada persona. Esto se puede hacer asegurando la equivalencia de contenido y/o estadística, así como metadatos auxiliares como los tipos de ítems o el nivel cognitivo.
Equivalencia de contenido
Esta parte es relativamente sencilla. Si el plan de prueba requiere 20 ítems en cada uno de los 5 dominios, para un total de 100 ítems, entonces cada formulario administrado a los examinados debe seguir este plan. A veces, el plan de contenido puede tener 2 o incluso 3 niveles de profundidad.
Equivalencia estadística
Por supuesto, existen dos paradigmas psicométricos predominantes: la teoría clásica de las pruebas (TCP) y la teoría de respuesta al ítem (TRI). Con la TCP, es fácil crear formularios que tengan un valor P equivalente y, por lo tanto, una puntuación media esperada. Si se dispone de estadísticas biseriales puntuales para cada ítem, también se puede diseñar el algoritmo para diseñar formularios que tengan la misma desviación estándar y confiabilidad.
Con la teoría de respuesta al ítem, el enfoque típico es diseñar formularios que tengan la misma función de información de la prueba o, a la inversa, la función de error estándar condicional de la medición. Para obtener más información sobre cómo se implementan, lea esta publicación del blog sobre la TRI o descargue nuestra herramienta de ensamblaje de formularios clásicos.
Implementación de la prueba lineal sobre la marcha
PLSM se implementa generalmente mediante la publicación de un conjunto de elementos con un algoritmo para seleccionar subconjuntos que cumplan con los requisitos. Por lo tanto, necesita un motor de pruebas psicométricamente sofisticado que almacene las estadísticas y los metadatos de los elementos necesarios, le permita definir un conjunto de elementos, especificar las opciones relevantes, como las estadísticas de destino y los planos, y entregar la prueba de manera segura. Muy pocas plataformas de prueba pueden implementar una evaluación PLSM de calidad. La plataforma de ASC lo hace; haga clic aquí para solicitar una demostración.
Beneficios de usar PLSM en las pruebas
Sin duda, no es fácil crear un banco de elementos sólido, diseñar grupos de PLSM y desarrollar un algoritmo complejo que satisfaga las necesidades de equilibrio estadístico y de contenido. Entonces, ¿por qué una organización utilizaría pruebas lineales sobre la marcha?
Bueno, es mucho más seguro que tener unos pocos formularios lineales. Dado que cada persona recibe un formulario único, es imposible que se diga cuáles son las primeras preguntas de la prueba. Y, por supuesto, simplemente podríamos realizar una selección aleatoria de 100 elementos de un grupo de 200, pero eso sería potencialmente injusto. El uso de PLSM garantizará que la prueba siga siendo justa y defendible.
Nathan Thompson, PhD
Latest posts by Nathan Thompson, PhD (see all)
- Grabación del Webinario: Una Historia de las Pruebas Adaptativas Computarizadas con el Prof. David J. Weiss - noviembre 16, 2024
- Simulación de Monte Carlo en pruebas adaptativas - noviembre 15, 2024
- Análisis y Estadísticas de Ítems - noviembre 4, 2024